【題目】如圖所示,點(diǎn)O是等邊三角形ABC的中心,射線OEAB邊于點(diǎn)E,OFBC邊于點(diǎn)F,若ABC的面積為S,∠EOF120°,則當(dāng)∠EOF繞點(diǎn)O旋轉(zhuǎn)時(shí),得到的陰影面積發(fā)生變化嗎?下面有三名同學(xué)提出了各自的觀點(diǎn).

甲:陰影部分的面積會(huì)發(fā)生變化,且當(dāng)OE,OF分別與ABC的邊垂直時(shí),陰影部分的面積最。

乙:陰影部分的面積會(huì)發(fā)生變化,且當(dāng)EF分別與ABC的頂點(diǎn)重合時(shí),陰影部分的面積最大.

丙:無論怎樣旋轉(zhuǎn),陰影部分的面積都保持不變.

你支持誰的觀點(diǎn)?____________

【答案】

【解析】

連接BO,CO,證明BOECOF ,則把BOE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到COF可以證明陰影部分面積總等于ABC的三分之,因此丙的觀點(diǎn)是對(duì)的。

如圖,連結(jié)OBOC.

∵點(diǎn)O是等邊三角形ABC的中心,

∴∠OBE=OCF=30°,BO=CO

BOC=120°=BOF+FOC

∵∠EOF120°,

即∠BOE+BOF=EOF120°,

∴∠BOE=COF

BOECOF(ASA)

故將BOE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°可得到COF,

S陰影SBOCSABC.

∴丙的觀點(diǎn)是正確的。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD的兩條對(duì)角線分別為68,MN分別是邊BC、CD的中點(diǎn),P是對(duì)角線BD上一點(diǎn),則PM+PN的最小值=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我國(guó)的發(fā)展與強(qiáng)大,中國(guó)文化與世界各國(guó)文化的交流與融合進(jìn)一步加強(qiáng).為了增進(jìn)世界各國(guó)人民對(duì)中國(guó)語言和文化的理解,在世界各國(guó)建立孔子學(xué)院,推廣漢語,傳播中華文化.同時(shí),各國(guó)學(xué)校之間的交流活動(dòng)也逐年增加.在與國(guó)際友好學(xué)校交流活動(dòng)中,小敏打算制做一個(gè)正方體禮盒送給外國(guó)朋友,每個(gè)面上分別書寫一種中華傳統(tǒng)美德,一共有仁義禮智信孝六個(gè)字.如圖是她設(shè)計(jì)的禮盒平面展開圖,那么字對(duì)面的字是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+1的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)A(m,2).
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)設(shè)一次函數(shù)y=x+1的圖象與x軸交于點(diǎn)B,若點(diǎn)P是x軸上一點(diǎn),且滿足△ABP的面積是2,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)y= 的圖象相交于A、B兩點(diǎn),一次函數(shù)的圖象與y軸相交于點(diǎn)C,已知點(diǎn)A(4,1)
(1)求反比例函數(shù)的解析式;
(2)連接OB(O是坐標(biāo)原點(diǎn)),若△BOC的面積為3,求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,與反比例函數(shù)y= 的圖象在第二象限交于點(diǎn)C,CE⊥x軸,垂足為點(diǎn)E,tan∠ABO= ,OB=4,OE=2.

(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限上的點(diǎn),過點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF.如果SBAF=4SDFO , 求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,分別平分,則的度數(shù)為(

A. 16°B. 32°C. 48°D. 64°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司招聘職員兩名,對(duì)甲、乙、丙、丁四名候選人進(jìn)行了筆試和面試,各項(xiàng)成績(jī)滿分均為100分,然后再按筆試占60%、面試占40%計(jì)算候選人的綜合成績(jī)(滿分為100分).

他們的各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>

修造人

筆試成績(jī)/分

面試成績(jī)/分

90

88

84

92

x

90

88

86

(1)直接寫出這四名候選人面試成績(jī)的中位數(shù);

(2)現(xiàn)得知候選人丙的綜合成績(jī)?yōu)?7.6分,求表中x的值;

(3)求出其余三名候選人的綜合成績(jī),并以綜合成績(jī)排序確定所要招聘的前兩名的人選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)E為BC的中點(diǎn),AB=4,∠BED=120°,則圖中陰影部分的面積之和為( 。

A.
B.2
C.
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案