已知在矩形ABCD中,P是邊AD上的一動(dòng)點(diǎn),聯(lián)結(jié)BP、CP,過點(diǎn)B作射線交線段CP的延長(zhǎng)線于點(diǎn)E,交邊AD于點(diǎn)M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)當(dāng)AP=4時(shí),求∠EBP的正切值;
(3)如果△EBC是以∠EBC為底角的等腰三角形,求AP的長(zhǎng).
解:(1)∵四邊形ABCD是矩形,
∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,
∴∠APB=∠PBC.
∵∠ABE=∠CBP,
∴∠ABM=∠APB.
又∵∠A=∠A,
∴△ABM∽△APB,
∴=,
∴=,
∴y=x﹣.
∵P是邊AD上的一動(dòng)點(diǎn),
∴0≤x≤5.
∵y>0,
∴x﹣>0,
∴x>2,
∴函數(shù)的定義域?yàn)?<x≤5;
(2)過點(diǎn)M作MH⊥BP于H,如圖.
∵AP=x=4,∴y=x﹣=3,
∴MP=3,AM=1,
∴BM==,BP==2.
∵S△BMP=MP•AB=BP•MH,
∴MH==,
∴BH==,
∴tan∠EBP==;
(3)①若EB=EC,
則有∠EBC=∠ECB.
∵AD∥BC,
∴∠AMB=∠EBC,∠DPC=∠ECB,
∴∠AMB=∠DPC.
在△AMB和△DPC中,
,
∴△AMB≌△DPC,
∴AM=DP,
∴x﹣y=5﹣x,
∴y=2x﹣5,
∴x﹣=2x﹣5,
解得:x1=1,x2=4.
∵2<x≤5,
∴AP=x=4;
②若CE=CB,
則∠EBC=∠E.
∵AD∥BC,
∴∠EMP=∠EBC=∠E,
∴PE=PM=y,
∴PC=EC﹣EP=5﹣y,
∴在Rt△DPC中,
(5﹣y)2﹣(5﹣x)2=22,
∴(10﹣x﹣y)(x﹣y)=4,
∴(10﹣x﹣x+)(x﹣x+)=4,
整理得:3x2﹣10x﹣4=0,
解得:x3=,x4=(舍負(fù)).
∴AP=x=.
終上所述:AP的值為4或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降.今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.
(1)今年5月份A款汽車每輛售價(jià)多少萬元?
(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價(jià)為7.5萬元,B款汽車每輛進(jìn)價(jià)為6萬元,公司預(yù)計(jì)用不多于105萬元且不少于99萬元的資金購進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?
(3)如果B款汽車每輛售價(jià)為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時(shí),哪種方案對(duì)公司更有利?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,A(0,4),B(2,0),點(diǎn)C在第一象限,若以A、B、C為頂點(diǎn)的三角形與△AOB相似(不包括全等),則點(diǎn)C的個(gè)數(shù)是( 。
A. 1 B.2 C.3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長(zhǎng);
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線點(diǎn)F.問:
(1)圖中△APD與哪個(gè)三角形全等?并說明理由;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD切⊙O于點(diǎn)D,連接AD.若∠A=25°,則∠C= 度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com