中就有“若勾三.股四.則弦五 的記載.如圖1是由邊長均為1的小正方形和Rt△ABC構(gòu)成的.可以用其面積關(guān)系驗證勾股定理.將圖1按圖2所示“嵌入 長方形LMJK.則該長方形的面積為( ) A.120B.110C.100D.90">
【題目】勾股定理在平面幾何中有著不可替代的重要地位,在我國古算書(周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,如圖1是由邊長均為1的小正方形和Rt△ABC構(gòu)成的,可以用其面積關(guān)系驗證勾股定理,將圖1按圖2所示“嵌入”長方形LMJK,則該長方形的面積為( )
A.120B.110C.100D.90
【答案】B
【解析】
延長AB交KF于點O,延長AC交GM于點P,可得四邊形AOLP是正方形,然后求出正方形的邊長,再求出矩形KLMJ的長與寬,然后根據(jù)矩形的面積公式列式計算即可得解.
解:延長AB交KF于點O,延長AC交GM于點P,如圖所示:
則四邊形OALP是矩形.
∵∠CBF=90°,
∴∠ABC+∠OBF=90°,
又∵Rt△ABC中,∠ABC+∠ACB=90°,
∴∠OBF=∠ACB,
在△OBF和△ACB中,
∵∠BAC=∠BOF,
∠ACB=∠OBF,
BC=BF,,
∴△OBF≌△ACB(AAS),
∴AC=OB,
同理:△ACB≌△PGC,
∴PC=AB,
∴OA=AP,
∴矩形AOLP是正方形,邊長AO=AB+AC=3+4=7,
∴KL=3+7=10,LM=4+7=11,
∴長方形KLMJ的面積為10×11=110.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列五個命題中的真命題有( )
①兩條直線被第三條直線所截,同位角相等;②三角形的一個外角等于它的兩個內(nèi)角之和;③兩邊分別相等且一組內(nèi)角相等的兩個三角形全等;④有理數(shù)與數(shù)軸上的點一一對應(yīng);⑤實數(shù)分為有理數(shù)、無理數(shù).
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用甲、乙兩種原料配制成某種飲料,已知這兩種原料的維生素含量C及購這兩種原料的價格如下表:
甲 | 乙 | |
維生素C(單位/千克) | 600 | 100 |
原料價格(元/千克) | 8 | 4 |
現(xiàn)配制這種飲料10千克,要求至少含有4200單位的維生素C,并要求購買甲、乙兩種原料的費用不超過72元.請問:既要符合要求又要成本最低,則購買甲種原料應(yīng)該在什么范圍之內(nèi),最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,因為
,所以可用、
來表示
的小數(shù)部分.請解答下列問題:
(1)的整數(shù)部分是__________,小數(shù)部分是__________.
(2)如果的整數(shù)部分為
,小數(shù)部分為
,求
的值.
(3)已知,其中
是整數(shù),且
.則求
的平方根的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,一次函數(shù)的圖像與
軸交于點A,與
軸交于點B,點C是直線AB上一點,它的坐標為(
,2),經(jīng)過點C作直線CD∥軸交
軸于點D.
(1)求點C的坐標及線段AB的長;
(2)已知點P是直線CD上一點.
①若△POC的面積是4,求點P的坐標;
②若△POC是直角三角形,請直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=BC,AC=.四邊形BDEF是△ABC的內(nèi)接正方形(點D、E、F在三角形的邊上).則此正方形的面積為( )
A.25.B. .C.5.D.10.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3),設(shè)拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標;
(2)以B、C、D為頂點的三角形是直角三角形嗎?為什么?
(3)設(shè)(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com