【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx﹣3交x軸于點(diǎn)A(﹣3,0)、B(1,0),在y軸上有一點(diǎn)E(0,1),連接AE.
(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)D為拋物線在x軸負(fù)半軸下方的一個(gè)動(dòng)點(diǎn),求△ADE面積的最大值;
(3)拋物線對稱軸上是否存在點(diǎn)P,使△AEP為等腰三角形?若存在,請直接寫出所有P點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1) 二次函數(shù)解析式為y=x2+2x﹣3;(2) △ADE的面積取得最大值為;(3)點(diǎn)P的坐標(biāo)為(﹣1,)或(﹣1,﹣)或(﹣1,﹣1)或(﹣1,﹣2)或(﹣1,4).
【解析】
(1)利用待定系數(shù)法求解可得;
(2)先求出直線的解析式為,作軸,延長交于點(diǎn),設(shè),則,,根據(jù)可得函數(shù)解析式,利用二次函數(shù)性質(zhì)求解可得答案;
(3)先根據(jù)拋物線解析式得出對稱軸為直線,據(jù)此設(shè),由,知,,,再分,及三種情況分別求解可得.
解:(1)∵二次函數(shù)y=ax2+bx﹣3經(jīng)過點(diǎn)A(﹣3,0)、B(1,0),
∴,
解得:,
∴二次函數(shù)解析式為y=x2+2x﹣3;
(2)設(shè)直線AE的解析式為y=kx+b,
∵過點(diǎn)A(﹣3,0),E(0,1),
∴,
解得:,
∴直線AE解析式為,
如圖,過點(diǎn)D作DG⊥x軸于點(diǎn)G,延長DG交AE于點(diǎn)F,
設(shè)D(m,m2+2m﹣3),則F(),
∴DF=﹣m2﹣2m+3+m+1=﹣m2﹣m+4,
∴S△ADE=S△ADF+S△DEF
=×DF×AG+DF×OG
=×DF×(AG+OG)
=×3×DF
=(﹣m2﹣m+4)
=﹣m2﹣m+6
=﹣(m+)2+,
∴當(dāng)m=時(shí),△ADE的面積取得最大值為.
(3)∵y=x2+2x﹣3=(x+1)2﹣4,
∴拋物線對稱軸為直線x=﹣1,
設(shè)P(﹣1,n),
∵A(﹣3,0),E(0,1),
∴AP2=(﹣1+3)2+(n﹣0)2=4+n2,AE2=(0+3)2+(1﹣0)2=10,PE2=(0+1)2+(1﹣n)2=(n﹣1)2+1,
①若AP=AE,則AP2=AE2,即4+n2=10,解得n=±,
∴點(diǎn)P(﹣1,)或(﹣1,﹣);
②若AP=PE,則AP2=PE2,即4+n2=(n﹣1)2+1,解得n=﹣1,
∴P(﹣1,﹣1);
③若AE=PE,則AE2=PE2,即10=(n﹣1)2+1,解得n=﹣2或n=4,
∴P(﹣1,﹣2)或(﹣1,4);
綜上,點(diǎn)P的坐標(biāo)為(﹣1,)或(﹣1,﹣)或(﹣1,﹣1)或(﹣1,﹣2)或(﹣1,4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點(diǎn)E,△PCD的周長為12,∠APB=60°.
求:(1)PA的長;
(2)∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C為圓心,r為半徑的圓與AB有何位置關(guān)系?(1) r=2cm;(2) r=2.4cm;(3) r=3cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形OABC中,BC∥AO,∠AOC=90°,點(diǎn)A,B的坐標(biāo)分別為(5,0), (2,6),點(diǎn)D為AB上一點(diǎn),且BD=2AD,雙曲線y=(k>0)經(jīng)過點(diǎn)D,交BC于點(diǎn)E.
(1)求雙曲線的解析式;
(2)求四邊形ODBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為4,圓心角為90°的扇形BAC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)B、C的對應(yīng)點(diǎn)分別為點(diǎn)D、E且點(diǎn)D剛好在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為菱形ABCD對角線上一點(diǎn),以點(diǎn)O為圓心,OA長為半徑的⊙O與BC相切于點(diǎn)M.
(1)求證:CD與⊙O相切;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx﹣3交x軸于點(diǎn)A(﹣3,0)、B(1,0),在y軸上有一點(diǎn)E(0,1),連接AE.
(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)D為拋物線在x軸負(fù)半軸下方的一個(gè)動(dòng)點(diǎn),求△ADE面積的最大值;
(3)拋物線對稱軸上是否存在點(diǎn)P,使△AEP為等腰三角形?若存在,請直接寫出所有P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長線相交于點(diǎn)E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,PA、PB是⊙O的切線;A、B是切點(diǎn);連結(jié)OA、OB、OP.
①若∠COP=∠DOP,求證:AC=BD;
②連結(jié)CD,設(shè)△PCD的周長為l,若l=2AP,判斷直線CD與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com