【題目】如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD位于第二象限,且AB∥x軸,點B在點C的正下方,雙曲線y=(x<0)經(jīng)過點C.
(1)m的取值范圍是 ;
(2)若點B(﹣1,1),判斷雙曲線是否經(jīng)過點A;
(3)設(shè)點B(a,2a+1).
①若雙曲線經(jīng)過點A,求a的值;
②若直線y=2x+2交AB于點E,雙曲線與線段AE有交點,求a的取值范圍.
【答案】(1)m>;(2)雙曲線是經(jīng)過點A,見解析;(3)① a=﹣;②﹣ ≤a≤﹣
【解析】
(1)根據(jù)雙曲線所處得象限得到1﹣2m<0,解不等式即可;
(2)根據(jù)正方形得性質(zhì)求得A(﹣3,1),C(﹣1,3),由雙曲線經(jīng)過C點,且﹣3×1=﹣1×3即可判斷;
(3)①根據(jù)B點坐標(biāo)求得A、C點坐標(biāo),由雙曲線經(jīng)過A、C點,得到(a﹣2)(2a+1)=a(2a+3),解放車即可求得結(jié)論;②點E在AB上,則E點縱坐標(biāo)為2a+1,進而求得E點坐標(biāo),代入雙曲線y=得2a+1=,解得a=﹣,結(jié)合①即可解決問題.
解:(1)∵雙曲線y=(x<0)位于第二象限,
∴1﹣2m<0,
∴m>;
故答案為m>;
(2)∵點B(﹣1,1),
∴A(﹣3,1),C(﹣1,3),
∵雙曲線y=(x<0)經(jīng)過點C,
∴雙曲線為y=﹣,
∵﹣3×1=﹣3,
∴雙曲線是經(jīng)過點A;
(3)①∵點B(a,2a+1),
∴A(a﹣2,2a+1),C(a,2a+3),
∵雙曲線y=(x<0)經(jīng)過點A、C,
∴(a﹣2)(2a+1)=a(2a+3),
解得a=﹣;
②∵點E在AB上,
∴E點縱坐標(biāo)為2a+1,
代入y=2x+2得,x=a﹣,
∴E(a﹣,2a+1),
∵C(a,2a+3),雙曲線y=(x<0)經(jīng)過點C,
∴雙曲線為y=
把E(a﹣,2a+1)代入得,2a+1=,
解得a=﹣,
∴雙曲線與線段AE有交點,a的取值范圍是﹣ ≤a≤﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)自變量的取值范圍是全體實數(shù),與的幾組對應(yīng)值列表如下:其中, .
…… | 0 | 1 | 2 | 3 | …… | ||||||
…… | 3 | 0 | 0 | 3 | …… |
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,已畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出一條函數(shù)的性質(zhì): ;
(4)觀察函數(shù)圖象發(fā)現(xiàn):若關(guān)于的方程有4個實數(shù)根,則的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);
(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:幾個全等的正多邊形依次有一邊重合,排成一圈,中間可以圍成一個正多邊形,我們稱作正多邊形的環(huán)狀連接。如圖,我們可以看作正六邊形的環(huán)狀連接,中間圍成一個邊長相等的正六邊形;若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為;
若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為________,若邊長為1的正n邊形作環(huán)狀連接,中間圍成的是等邊三角形,則這個環(huán)狀連接的外輪廓長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形中,,,點,分別在邊,上,直線交矩形對角線于點,將沿直線翻折,點落在點處,且點在射線上.
(1)如圖1所示,當(dāng)時,求的長;
(2)如圖2所示,當(dāng)時,求的長;
(3)請寫出線段的長的取值范圍,及當(dāng)的長最大時的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關(guān)于⊙C的限距點的定義如下:若P′為直線PC與⊙C的一個交點,滿足r≤PP′≤2r,則稱P′為點P關(guān)于⊙C的限距點,如圖為點P及其關(guān)于⊙C的限距點P′的示意圖.
(1)當(dāng)⊙O的半徑為1時.
①分別判斷點M(3,4),N(,0),T(1,)關(guān)于⊙O的限距點是否存在?若存在,求其坐標(biāo);
②點D的坐標(biāo)為(2,0),DE,DF分別切⊙O于點E,點F,點P在△DEF的邊上.若點P關(guān)于⊙O的限距點P′存在,求點P′的橫坐標(biāo)的取值范圍;
(2)保持(1)中D,E,F三點不變,點P在△DEF的邊上沿E→F→D→E的方向運動,⊙C的圓心C的坐標(biāo)為(1,0),半徑為r,請從下面兩個問題中任選一個作答.
問題1:若點P關(guān)于⊙C的限距點P′存在,且P′隨點P的運動所形成的路徑長為πr,則r的最小值為__________.
問題2:若點P關(guān)于⊙C的限距點P′不存在,則r的取值范圍為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD是由三個全等矩形拼成的,AC與DE、EF、FG、HG、HB分別交于點P、Q、K、M、N,設(shè)△EPQ、△GKM、△BNC的面積依次為S1、S2、S3.若S1+S3=30,則S2的值為( ).
A.6B.8
C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC和△DEF的頂點都在格點上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)畫出△ABC向上平移4個單位長度后所得到的△A1B1C1;
(2)畫出△DEF繞點O按順時針方向旋轉(zhuǎn)90°后所得到的△D1E1F1;
(3)△A1B1C1和△D1E1F1組成的圖形是軸對稱圖形嗎?如果是,請直接寫出對稱軸所在直線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com