【題目】江西二套“誰是贏家”二七王比賽中,節(jié)目要統(tǒng)計(jì) 4 位選手的短信支持率,第一次 公布 4 位選手的短信支持率情況如圖 1,一段時(shí)間后,第二次公布 4 位選手的短信支持率,情況如圖 2,第二次公布短信支持率時(shí),每位選手的短信支持條數(shù)均有增加, 且每位選手增加的短信支持條數(shù)相同.
(1)比較圖1,圖2的變化情況,寫出2條結(jié)論;
(2)寫出第一次4位短信支持總條數(shù)與第二次4位短信支持總條數(shù)的等式關(guān)系,并證明這個(gè)等式關(guān)系.
【答案】(1)①短信支持率高于25%的會(huì)下降;②短信支持率等于25%的會(huì)不變;(2)b=2a,證明見解析;
【解析】
(1)從圖中得出3號(hào)支持率下降,2,4號(hào)的上升,1號(hào)的不變;
(2)由于有次之間這4位選手的短信支持條數(shù)相同,則25%b-25%a=22.5%b-20%a=30%b-35%a,化簡(jiǎn)即可.
(1)兩次之間這4位選手的短信支持條數(shù)相同情況下,比較圖1,圖2的變化情況,可知:
①短信支持率高于25%的會(huì)下降;
②短信支持率等于25%的會(huì)不變;
③短信支持率低于25%的會(huì)上升;
(2)設(shè)第一次4位短信支持總條數(shù)為a與第二次4位短信支持總條數(shù)b,它們等式關(guān)系為:b=2a.
證明如下:
∵兩次之間這4位選手的短信支持條數(shù)相同
∴25%b-25%a=22.5%b-20%a=30%b-35%a
整理得:b=2a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用四個(gè)螺絲將四條不可彎曲的本條圍成一個(gè)木框(形狀不限),不記螺絲大小,其中相鄰兩螺絲之間的距離依次為3,4,5,7.且相鄰兩本條的夾角均可調(diào)整,若調(diào)整木條的夾角時(shí)不破壞此木框,則任意兩個(gè)螺絲之間的最大距離是( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了方便行人,市政府打算修建如圖所示的過街天橋,橋面AD平行于地面BC,立柱AE⊥BC于點(diǎn)E,立柱DF⊥BC于點(diǎn)F,若AB=5米,tanB=,∠C=30°.
(1)求橋面AD與地面BC之間的距離.
(2)因受地形限制,決定對(duì)該天橋進(jìn)行改建,使CD斜面的坡度變陡,將其30°坡角改為40°,改建后斜面為DG,試計(jì)算此次改建節(jié)省路面寬度CG大約應(yīng)是多少?(結(jié)果精確到0.1米,參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當(dāng)O為多少度時(shí),CD平分OCF,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生自主意識(shí),拓寬學(xué)生視野,促進(jìn)學(xué)習(xí)與生活的深度融合我市某中學(xué)決定組織部分學(xué)生去青少年綜合實(shí)踐基地進(jìn)行綜合實(shí)踐活動(dòng)在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生現(xiàn)有甲、乙兩種大客車它們的載客量和租金如表所示
甲種客車 | 乙種客車 | |
載客量(人/輛) | 30 | 42 |
租金(元/輛) | 300 | 400 |
學(xué)校計(jì)劃此實(shí)踐活動(dòng)的租車總費(fèi)用不超過3100元,為了安全每輛客車上至少要有2名老師.
(1)參加此次綜合實(shí)踐活動(dòng)的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,租用客車總數(shù)為多少輛?
(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2-mx+-=0的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么□ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,EF過對(duì)角線的交點(diǎn),若AB=4,BC=7,OE=1.5,則四邊形EFDC的周長(zhǎng)是( )
A. 14B. 17C. 10D. 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組想測(cè)量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長(zhǎng)為12米,它的坡度i=1:.在離C點(diǎn)40米的D處,用測(cè)角儀測(cè)得大樓頂端A的仰角為37°,測(cè)角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
【答案】33.3.
【解析】
試題分析:延長(zhǎng)AB交直線DC于點(diǎn)F,過點(diǎn)E作EH⊥AF,垂足為點(diǎn)H,在Rt△BCF中利用坡度的定義求得CF的長(zhǎng),則DF即可求得,然后在直角△AEH中利用三角函數(shù)求得AF的長(zhǎng),進(jìn)而求得AB的長(zhǎng).
試題解析:延長(zhǎng)AB交直線DC于點(diǎn)F,過點(diǎn)E作EH⊥AF,垂足為點(diǎn)H.
∵在Rt△BCF中, =i=1:,∴設(shè)BF=k,則CF=k,BC=2k.
又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.
答:大樓AB的高度約為33.3米.
考點(diǎn):1.解直角三角形的應(yīng)用-仰角俯角問題;2.解直角三角形的應(yīng)用-坡度坡角問題.
【題型】解答題
【結(jié)束】
24
【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會(huì)主義核心價(jià)值觀、未成年人基本文明禮儀規(guī)范”的知識(shí)競(jìng)賽活動(dòng),成績(jī)分為A、B、C、D四個(gè)等級(jí),并將收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中所給出的信息,解答下列各題:
(1)求八年一班共有多少人;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中等極為“D”的部分所占圓心角的度數(shù)為________;
(4)若等級(jí)A為優(yōu)秀,求該班的優(yōu)秀率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com