【題目】問題探究
(1)如圖①,已知正方形ABCD的邊長為4.點M和N分別是邊BC、CD上兩點,且BM=CN,連接AM和BN,交于點P.猜想AM與BN的位置關系,并證明你的結論.
(2)如圖②,已知正方形ABCD的邊長為4.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點C和D運動.連接AM和BN,交于點P,求△APB周長的最大值;
問題解決
(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點C和A運動.連接AM和BN,交于點P.求△APB周長的最大值.
【答案】(1)結論:AM⊥BN(2)△APB周長的最大值=4+4(3)△PAB的周長最大值=2+4
【解析】試題分析:根據全等三角形的判定SAS證明△ABM≌△BCN,即可證得AM⊥BN;
(2)如圖②,以AB為斜邊向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP,證明PA+PB=2EF,求出EF的最大值即可;
(3)如圖③,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB,證明PA+PB=PK,求出PK的最大值即可.
試題解析:(1)結論:AM⊥BN.
理由:如圖①中,
∵四邊形ABCD是正方形,
∴AB=BC,∠ABM=∠BCN=90°,
∵BM=CN,
∴△ABM≌△BCN,
∴∠BAM=∠CBN,
∵∠CBN+∠ABN=90°,
∴∠ABN+∠BAM=90°,
∴∠APB=90°,
∴AM⊥BN.
(2)如圖②中,以AB為斜邊向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP.
∵∠EFP=∠FPG=∠G=90°,
∴四邊形EFPG是矩形,
∴∠FEG=∠AEB=90°,
∴∠AEF=∠BEG,
∵EA=EB,∠EFA=∠G=90°,
∴△AEF≌△BEG,
∴EF=EG,AF=BG,
∴四邊形EFPG是正方形,
∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,
∵EF≤AE,
∴EF的最大值=AE=2,
∴△APB周長的最大值=4+4.
(3)如圖③中,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB.
∵AB=BC,∠ABM=∠BCN,BM=CN,
∴△ABM≌△BCN,
∴∠BAM=∠CBN,
∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,
∴∠APB=120°,
∵∠AKB=60°,
∴∠AKB+∠APB=180°,
∴A、K、B、P四點共圓,
∴∠BPH=∠KAB=60°,
∵PH=PB,
∴△PBH是等邊三角形,
∴∠KBA=∠HBP,BH=BP,
∴∠KBH=∠ABP,∵BK=BA,
∴△KBH≌△ABP,
∴HK=AP,
∴PA+PB=KH+PH=PK,
∴PK的值最大時,△APB的周長最大,
∴當PK是△ABK外接圓的直徑時,PK的值最大,最大值為4,
∴△PAB的周長最大值=2+4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù);
(2)試判斷OE是否平分∠BOC,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若將代數(shù)式中的任意兩個字母交換,代數(shù)式不變,則稱這個代數(shù)式為完全對稱式,如就是完全對稱式(代數(shù)式中換成b,b換成,代數(shù)式保持不變).下列三個代數(shù)式:①;②;③.其中是完全對稱式的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,某校開展“雙劇進課堂”的活動,該校童威隨機抽取部分學生,按四個類別:表示“很喜歡”,表示“喜歡”,表示“一般”,表示“不喜歡”,調查他們對漢劇的喜愛情況,將結果繪制成如下兩幅不完整的統(tǒng)計圖,根據圖中提供的信息,解決下列問題:
(1)這次共抽取_________名學生進行統(tǒng)計調查,扇形統(tǒng)計圖中,類所對應的扇形圓心角的大小為__________
(2)將條形統(tǒng)計圖補充完整
(3)該校共有1500名學生,估計該校表示“喜歡”的類的學生大約有多少人?
各類學生人數(shù)條形統(tǒng)計圖各類學生人數(shù)扇形統(tǒng)計圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖反映的過程是小明從家去菜地澆水,又去玉米地鋤草,然后回家.其中x表示時間,y表示小明離他家的距離.根據圖象回答下列問題:
①菜地離小明家多遠?小明走到菜地用了多少時間?
②小明給菜地澆水用了多少時間?
③玉米地離菜地、小明家多遠?小明從玉米地走回家平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列橫線上用含有,的代數(shù)式表示相應圖形的面積.
(1)①________;②__________;③__________;④_________________.
(2)通過拼圖,你發(fā)現(xiàn)前三個圖形的面積與第四個圖形面積之間有什么關系?請用數(shù)學式子表示:________________________________________.
(3)利用(2)的結論計算1972+2×197×3+32的值.( 注意不利用以上結論不得分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、CD是⊙O的兩條互相垂直的直徑,P為⊙O上一動點,過點P分別作PE⊥AB、PF⊥CD,垂足分別為E、F,M為EF的中點.若點P從點B出發(fā),以每秒15°的速度按逆時針方向旋轉一周,當∠MAB 取得最大值時,點P運動的時間為______秒.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)-40-28-(-19)+(-24)
(2)(-81)÷÷(-16)
(3)-22÷(-)-(1)×48
(4)-72+2×(-3)2-(-6)÷(-)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)-5+2-13+4
(2)(-2)×(-8)-9÷(-3)
(3)(-18)×(-)
(4)-(-3 )+12.5+(-16)+(-2.5)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com