【題目】如圖,菱形ABCD和菱形ECGF的邊長(zhǎng)分別為34,∠A=120°,則圖中陰影部分的面積是(

A.B.C.D.3

【答案】B

【解析】

設(shè)BFCE相交于點(diǎn)G′,利用相似三角形對(duì)應(yīng)邊成比例列式求出CG′,再求出DG′的長(zhǎng),然后求出兩個(gè)菱形的高,再根據(jù)三角形的面積公式列式計(jì)算即可得解.

解:如圖,設(shè)BFCE相交于點(diǎn)G′,

在菱形ECGF中,CEGF,

∴△BCG′∽△BGF

,

,

解得CG′=,

DG′=CDCG′=3,

∵菱形ABCD和菱形ECGF的邊長(zhǎng)分別為34,∠A120°,

∴菱形ABCDCD邊上的高為×3,菱形ECGFCE邊長(zhǎng)的高為×42,

∴圖中陰影部分的面積=××(+2)=

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個(gè)人住宿),雙人間(供兩個(gè)人住宿),四人間(供四個(gè)人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5倍.

(1)2018年學(xué)校寢室數(shù)為64個(gè),以后逐年增加,預(yù)計(jì)2020年寢室數(shù)達(dá)到121個(gè),求20182020年寢室數(shù)量的年平均增長(zhǎng)率;

(2)若三類不同的寢室的總數(shù)為121個(gè),則最多可供多少師生住宿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的邊AC上取一點(diǎn),使得AB=AD,若點(diǎn)D恰好在BC的垂直平分線上,寫出∠ABC與∠C的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在半徑為5cm的圓中,弦AB∥CD,AB=6cm,CD=8cm,求弦ABCD之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y1ax+b的圖象與x軸、y軸分別交于點(diǎn)D、C,與反比例函數(shù)y2的圖象交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3)、點(diǎn)B的坐標(biāo)是(3,m).

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求C、D兩點(diǎn)的坐標(biāo),并求△AOB的面積;

3)根據(jù)圖象直接寫出:當(dāng)x在什么取值范圍時(shí),y1y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請(qǐng)解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a24a的值中是否存在最小值?請(qǐng)說(shuō)明理由.

(3)應(yīng)用:如圖.已知線段AB6,MAB上的一個(gè)動(dòng)點(diǎn),設(shè)AMx,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長(zhǎng)方形MBCN.問(wèn):當(dāng)點(diǎn)MAB上運(yùn)動(dòng)時(shí),長(zhǎng)方形MBCN的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;否則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中,裝有2個(gè)紅球和1個(gè)白球,這些球除了顏色外都相同.

(1)攪勻后從中隨機(jī)摸出一球,請(qǐng)直接寫出摸出紅球的概率;

(2)如果第一次隨機(jī)摸出一個(gè)球(不放回),充分?jǐn)噭蚝,第二次再(gòu)氖S嗟膬汕蛑须S機(jī)摸出一個(gè)小球,求兩次都摸到紅球的概率.(用樹(shù)狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,AEBC于點(diǎn)E,點(diǎn)F,G分別是AB,AD的中點(diǎn),連接EF,F(xiàn)G,若∠EFG=90°,則FG的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,4),MN所在圓的圓心在x軸上,其中M(0,3),N(4,5),點(diǎn)P為弧MN上一點(diǎn),則線段AP長(zhǎng)度的最小值為___________________

查看答案和解析>>

同步練習(xí)冊(cè)答案