精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,D,E分別在邊BC,AC上,∠ADE=45°.
求證:△ABD∽△DCE.

【答案】證明:∵AB=AC,∠BAC=90°,

∴∠B=∠C=45°.

∵∠ADC=∠ADE+∠EDC=45°+∠EDC,∠ADC=∠B+∠BAD=45°+∠BAD,

∴∠BAD=∠EDC,

∵∠B=∠C,∠BAD=∠EDC,

∴△ABD∽△DCE


【解析】根據等腰直角三角形的性質及三角形內角與外角的關系,易證△ABD∽△DCE.
【考點精析】本題主要考查了等腰直角三角形和相似三角形的判定的相關知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°.

(1)用圓規(guī)和直尺在AC上作點P,使點PA、B的距離相等.(保留作圖痕跡,不寫作法和證明)

(2)當滿足(1)的點PAB、BC的距離相等時,求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某種型號汽車油箱容量為40L,每行駛100km耗油10L.設一輛加滿油的該型號汽車行駛路程為x(km),行駛過程中油箱內剩余油量為y(L)

(1)求yx之間的函數表達式;

(2)為了有效延長汽車使用壽命,廠家建議每次加油時油箱內剩余油量不低于油箱容量的四分之一,按此建議,求該輛汽車最多行駛的路程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個由若干小正方形堆成的幾何體,它從正面看和從左面看的圖形如圖1所示.

這個幾何體可以是圖2中甲,乙,丙中的______;

這個幾何體最多由______個小正方體堆成,最少由______個小正方體堆成;

請在圖3中用陰影部分畫出符合最少情況時的一個從上面往下看得到的圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點F,DHBCH,交BEG.下列結論:①BD=CD;AD+CF=BD;CE=BF;AE=BG.其中正確的是

A. ①② B. ①③ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法錯誤的是( )
A.同時拋兩枚普通正方體骰子,點數都是4的概率為
B.不可能事件發(fā)生機會為0
C.買一張彩票會中獎是可能事件
D.一件事發(fā)生機會為1.0%,這件事就有可能發(fā)生

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD(紙片)折疊,使點BAD邊上的點K重合,EG為折痕;點CAD邊上的點K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么我們稱這個三角形為美麗三角形,

(1)如圖△ABC中,AB=AC=,BC=2,求證:△ABC美麗三角形;

(2)RtABC中,∠C=90°,AC=2,若△ABC美麗三角形,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列事件中,是隨機事件的是( )
A.任意選擇某一電視頻道,它正在播放新聞聯播
B.三角形任意兩邊之和大于第三邊
C. 是實數,
D.在一個裝著白球和黑球的袋中摸球,摸出紅球

查看答案和解析>>

同步練習冊答案