【題目】綜合與實(shí)踐
動手實(shí)踐:數(shù)學(xué)課上老師讓學(xué)生們折矩形紙片下面幾幅圖是學(xué)生們折出的一部分圖形(沿直線折疊)由于折痕所在的直線不同,折出的圖形也不同,各個圖形中所“隱含的”基本圖形也不同.我們可以通過發(fā)現(xiàn)基本圖形研究這些圖形中幾何問題.
問題解決:(1)如圖1,將矩形紙片沿直線折疊,使得點(diǎn)與點(diǎn)重合,點(diǎn)落在點(diǎn)的位置,連接,,,線段交于點(diǎn),則與的關(guān)系為 ,線段與線段的關(guān)系為 .
小強(qiáng)量得,則 .
小麗說:“四邊形是菱形”,請你幫她證明.
拓展延伸:(2)如圖2,矩形紙片中,,,小明將矩形紙片沿直線折疊,點(diǎn)落在點(diǎn)的位置,交于點(diǎn),請你直接寫出線段的長: .
綜合探究:(3)如圖3,是一張矩形紙片,,.在矩形的邊上取一點(diǎn),在上取一點(diǎn),將紙片沿折疊,使線段與線段交于點(diǎn),得到.請你確定面積的取值范圍 .
【答案】(1)全等,垂直,80°,證明見解析;(2);(3)
【解析】
(1)矩形紙片沿直線折疊,點(diǎn)落在點(diǎn)的位置,得,因?yàn)?/span>,所以≌,證明≌,可得MN⊥AC;已知,所以,可得,根據(jù)AD∥BC,得出,所以;
證明△ANO≌△AMO,根據(jù)對角線互相垂直平分的四邊形是菱形來判定四邊形是菱形.
(2)過點(diǎn)M作ME⊥AD,交AD于E,設(shè)NE=x,MN=,B1N=4-,AN=4-x,
在Rt△AB1M中利用勾股定理可求出x,即可求出ND
(3)先求△MNP面積的最小值,過點(diǎn)M作ME⊥DN,垂足為E,已知ME=AD=1,∠PNM=∠PMN,可得MP=NP,根據(jù)MPME,可得NP1,所以△MNP的面積值大于等于;
然后求△MNP面積可以取到的最大值,分兩種情況討論,情況一:將矩形紙片對折,使點(diǎn)B與D重合,此時(shí)點(diǎn)P也與D重合.情況二:將矩形紙片沿對角線AC對折,此時(shí)折痕即為AC,分別求解△MNP的面積,此時(shí)為△MNP面積可取到的最大值,綜上所示即可求解出△MNP面積的取值范圍.
(1)∵矩形紙片沿直線折疊,點(diǎn)落在點(diǎn)的位置
∴
又∵
∴≌
∵矩形紙片沿直線折疊,點(diǎn)落在點(diǎn)的位置
∴≌
∴∠AOM=∠COM=90°
∴MN⊥AC
∵
∴
∵NA=NC
∴
∵AD∥BC
∴
∴
∵MN⊥AC
∴
∵,AO=AO
∴△ANO≌△AMO
∴ON=OM
又∵OA=OC,MN⊥AC
∴四邊形是菱形
故答案為:全等,垂直,80°,證明見解析
(2)過點(diǎn)M作ME⊥AD,交AD于E
設(shè)NE=x
MN=,B1N=4-,AN=4-x
在Rt△AB1M中
(4-x)2=32+(4-)2
解得x=
∴ND=NE+ED=2+=
故答案為:
(3)過點(diǎn)M作ME⊥DN,垂足為E,
ME=AD=1.
∵∠PNM=∠PMN,
∴MP=NP,
又∵MPME,
∴NP1.
∴△MNP的面積=NPME
∴△MNP的面積大于等于
情況一:將矩形紙片對折,使點(diǎn)B與D重合,此時(shí)點(diǎn)P也與D重合.
MP=MB=x,則AM=5x
由勾股定理得12+(5-x)2=x2
解得x=2.6
∴MD=ND=2.6
S△MNP==1.3
情況二:將矩形紙片沿對角線AC對折,此時(shí)折痕即為AC
MP=AP=CP=x,則DP=5x
同理可得:MP=NP=2.6
∵MD=1,
∴S△MNP==1.3
△MNP的面積最大值為1.3.
綜上所述面積的取值范圍為≤S△MNP≤1.3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),直線經(jīng)過點(diǎn),與拋物線的另一個交點(diǎn)為點(diǎn),點(diǎn)的橫坐標(biāo)為3,線段在線段上移動,=1,分別過點(diǎn)作軸的垂線,交拋物線于,交直線于.
(1)求拋物線的解析式;
(2)當(dāng)四邊形DEFG為平行四邊形時(shí),求出此時(shí)點(diǎn)P,Q的坐標(biāo);
(3)在線段PQ的移動過程中,以D,E,F,G為頂點(diǎn)的四邊形面積是否有最大值,若有求出最大值,若沒有請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.
(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?
(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費(fèi)用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,是邊上一點(diǎn),沿直線翻折,點(diǎn)落在點(diǎn)處,如果,那么的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸正半軸相交,其頂點(diǎn)坐標(biāo)為,下列結(jié)論:①;②;③;④.其中正確的個數(shù)是( ).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)O在BC上,以線段OC的長為半徑的⊙O與AB相切于點(diǎn)D,分別交BC、AC于點(diǎn)E、F,連接ED并延長,交CA的延長線于點(diǎn)G.
(1)求證:∠DOC=2∠G.
(2)已知⊙O的半徑為3.
①若BE=2,則DA= .
②當(dāng)BE= 時(shí),四邊形DOCF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(,是常數(shù)),其圖象與水平直線,,鉛直直線,的位置如圖所示,若以其中的兩條直線為軸,軸所在的直線建立平面直角坐標(biāo)系(向右為軸正方向,向上為軸正方向),則下列說法正確的是( )
A.軸、軸所在直線可以是直線和直線B.軸、軸所在直線可以是直線和直線
C.軸、軸所在直線可以是直線和直線D.軸、軸所在直線可以是直線和直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點(diǎn)H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A、C重合),分別過點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當(dāng)點(diǎn)D與A重合時(shí),我們認(rèn)為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對給定的一個x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最。ú槐貙懗鲞^程),并寫出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自我省深化課程改革以來,某校開設(shè)了:A.利用影長求物體高度,B.制作視力表,C.設(shè)計(jì)遮陽棚,D.制作中心對稱圖形,四類數(shù)學(xué)實(shí)踐活動課.規(guī)定每名學(xué)生必選且只能選修一類實(shí)踐活動課,學(xué)校對學(xué)生選修實(shí)踐活動課的情況進(jìn)行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息解決下列問題:
(1)本次共調(diào)查名學(xué)生,扇形統(tǒng)計(jì)圖中B所對應(yīng)的扇形的圓心角為度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)選修D類數(shù)學(xué)實(shí)踐活動的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機(jī)抽取2人做校報(bào)設(shè)計(jì),請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com