【題目】(1)問題發(fā)現(xiàn):如圖1, 和均為等邊三角形,點在同一直線上,連接
①求證:; ②求的度數(shù).
(2)拓展探究:如圖2, 和均為等腰直角三角形,,點在同一直線上為中邊上的高,連接
①求的度數(shù):
②判斷線段之間的數(shù)量關系(直接寫出結果即可).
解決問題:如圖3,和均為等腰三角形,,點在同一直線上,連接.求的度數(shù)(用含的代數(shù)式表示,直接寫出結果即可).
【答案】(1)①證明見解析;②60°;(2)①90°;②BE=CE+2AF;(3)∠AEC=90°+.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根據(jù)SAS進一步證明△BAD≌△CAE,依據(jù)其性質(zhì)可得,再根據(jù)對應角相等求出的度數(shù);
(2)根據(jù)等腰直角三角形的性質(zhì)得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根據(jù)SAS進一步證明△BAD≌△CAE,根據(jù)對應角相等求出的度數(shù);因為DE=2AF,BD=EC,結合線段的和差關系得出結論;
(3)根據(jù)等腰三角形的性質(zhì)得AB=AC,AD=AE, ∠DAE=∠BAC=n°,根據(jù)SAS進一步證明△BAD≌△CAE,根據(jù)對應角相等求出得出∠ADB=的度數(shù),結合內(nèi)角和用n表示∠ADE的度數(shù),即可得出結論.
(1)①∵△ABC和△ADE均為等邊三角形(如圖1),
∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴ ∠BAC-∠DAC=∠DAE-∠DAC,
∴ ∠BAD=∠CAE.
∴ △BAD≌△CAE(SAS)
∴ BD=CE.
② 由△CAE≌△BAD,
∴ ∠AEC=∠ADB=180°-∠ADE=120°.
∴ ∠BEC=∠AEC-∠AED=120°-60°=60°.
(2)①∵△ABC和△ADE均為等腰直角三角形(如圖2),
∴ AB=AC,AD=AE,∠ADE=∠AED=45°,
∵ ∠BAC=∠DAE=90°,
∴ ∠BAC-∠DAC=∠DAE-∠DAC,
∴ ∠BAD=∠CAE.
∴ △BAD≌△CAE(SAS).
∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.
∴ ∠BEC=∠AEC-∠AED=135°-45°=90°.
② BE=CE+2AF.
(3)如圖3:∠AEC=90°+,理由如下,
∵△ABC和△ADE均為等腰直角三角形,
∴ AB=AC,AD=AE,∠ADE=∠AED=n°,
∴ ∠BAC-∠DAC=∠DAE-∠DAC,
∴ ∠BAD=∠CAE.
∴ △BAD≌△CAE(SAS).
∴ ∠AEC=∠ADB=180°-∠ADE=180°- .
∴∠AEC=90°+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個質(zhì)地均勻的正四面體的四個面上依次標有數(shù)字-2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點的橫、縱坐標,則點M(a,b)落在以A(-2,0),B(2,0),C(0,2)為頂點的三角形內(nèi)(包含邊界)的概率是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB=AD=2,BC=3,CD=1,∠A=90°.
(1)求BD的長;
(2)求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學家趙爽曾用圖1證明了勾股定理,這個圖形被稱為“弦圖”.2002年在北京召開的國際數(shù)學家大會(ICM 2002)的會標(圖2),其圖案正是由“弦圖”演變而來.“弦圖”是由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形請你根據(jù)圖1解答下列問題:
(1)敘述勾股定理(用文字及符號語言敘述);
(2)證明勾股定理;
(3)若大正方形的面積是,小正方形的面積是,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.
(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關系與位置關系,并直接寫出結論;
(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結論是否仍然成立?請證明你的結論;
(3)將圖1中的正方形CEFG繞點C旋轉(zhuǎn),使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點.
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,點E在AB上,AB=DC=DE, AD⊥AB,BC⊥AB,CF⊥DE,垂足分別為點A,B,F,AD=BC=6,EB=2.
(1)求證:CF=CB;
(2)求△DEC的面積S的值;
(3)若將△DEC沿著DE翻折得到△DEG,DG交AB于點T,試判斷線段DT與CE的長度是否相等:并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com