【題目】某中學(xué)為了響應(yīng)國家發(fā)展足球的戰(zhàn)略方針,激發(fā)學(xué)生對足球的興趣,特舉辦全員參與的“足球比賽”,賽后,全校隨機(jī)抽查部分學(xué)生,其成績(百分制)整理分成5組,并制成如下頻數(shù)分布表和扇形統(tǒng)計圖,請根據(jù)所提供的信息解答下列問題:
成績頻數(shù)分布表
組別 | 成績(分) | 頻數(shù) |
A | 50≤x<60 | 6 |
B | 60≤x<70 | m |
C | 70≤x<80 | 20 |
D | 80≤x<90 | 36 |
E | 90≤x<100 | n |
(1)頻數(shù)分布表中的m= , n=;
(2)樣本中位數(shù)所在成績的級別是 , 扇形統(tǒng)計圖中,E組所對應(yīng)的扇形圓心角的度數(shù)是;
(3)若該校共有2000名學(xué)生,請你估計體育綜合測試成績不少于80分的大約有多少人?
【答案】
(1)4;18
(2)D;108
(3)
解:根據(jù)題意得:2000×(36%+30%)=1320(人),
答:該校九年級的學(xué)生中,測試成績不少于80分的大約有132人
【解析】解:(1)∵20÷20%=100,且A占6%,
∴E占30%,
∴B占8%,
∴6÷6%=m÷8%,
∴m=8,18
∴n=18.
故答案為4,18;(2)樣本中位數(shù)在36%部分,即為D部分,E組所對應(yīng)的扇形圓心角的度數(shù)是360°× =108°,
故答案為D,108°;
(1)根據(jù)頻數(shù)分布表和扇形統(tǒng)計圖可知E占30%,B占8%,即可得出B、D的頻數(shù);(2)根據(jù)中位數(shù)的概念,可得出中位數(shù)在D級別中,用360°乘以E組所占的比例即可;(3)用800乘以測驗成績不少于85分的所占的比例即可求出答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足為D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為E.
(1)求證:四邊形ADCE是矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片的一角斜折過去,點B落在點D處,EF為折痕,再把FC折過去與FD重合,FH為折痕,問:
(1)EF與FH有什么位置關(guān)系?
(2)∠CFH與∠BEF有什么數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.
(1)若∠COE=20°,則∠BOD= ;若∠COE=α,則∠BOD= (用含α的代數(shù)式表示)
(2)當(dāng)三角板繞O逆時針旋轉(zhuǎn)到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達(dá)A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達(dá)A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,則下列敘述不正確的是( 。
A. 點O不在直線AC上
B. 射線AB與射線BC是指同一條射線
C. 圖中共有5條線段
D. 直線AB與直線CA是指同一條直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“回”字形的道路寬為1米,整個“回”字形的長為8米,寬為1米,一個人從入口點A沿著道路中央走到中點B,他共走了( )
A. 55米 B. 55.5米 C. 56米 D. 56.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的路程(記向東為正)記錄如下(x>9且x<26,單位:km)
(1)說出這輛出租車每次行駛的方向.
(2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置.
(3)這輛出租車一共行駛了多少路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1, O為正方形ABCD的中心,分別延長OA,OD到點F,E,使OF=2OA,OE=2OD,連接EF,將△FOE繞點O按逆時針方向旋轉(zhuǎn)角α得到△FOE,連接AE,BF(如圖2).
(1)探究AE與BF的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)α=30°時,求證: △AOE為直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com