科目: 來源: 題型:
【題目】一艘輪船以每小時20千米的速度從甲港駛往160千米遠的乙港,2小時后,一艘快艇以每小時40千米的速度也從甲港駛往乙港.分別列出輪船和快艇行駛的路程y(千米)與時間x(小時)的函數(shù)關(guān)系式,在下圖中的直角坐標系中畫出函數(shù)圖象,觀察圖象回答下列問題:
(1)何時輪船行駛在快艇的前面?
(2)何時快艇行駛在輪船的前面?
(3)哪一艘船先駛過60千米?哪一艘船先駛過100千米?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,給出下列三個論斷:①∠B+∠D=180°;②AB∥CD;③BC∥DE.(1)在上述三個論斷中,以其中兩個論斷作為條件,另外一個論斷作結(jié)論,寫出一個正確的命題,并加以證明。
命題:如果____________________那么____________________
證明:
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,己知△ABC中,∠C=90°,∠A=30°,AC= .動點D在邊AC上,以BD為邊作等邊△BDE(點E、A在BD的同側(cè)).在點D從點A移動至點C的過程中,點E移動的路線長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<-1.5>=-1.
解決下列問題:
(1)[-4.5]=___,<3.5>=___;
(2)若[x]=2,則x的取值范圍是___;若<y>=-1,則y的取值范圍是___.
(3)已知x,y滿足方程組求x,y的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=7,點E是AD上一個動點,把△BAE沿BE向矩形內(nèi)部折疊,當點A的對應(yīng)點A′恰好落在∠BCD的平分線上時,CA′的長為( )
A.3或4
B.3 或4
C.3或4
D.4或3
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面的材料,回答問題:已知(x-2)(6+2x)>0,求x的取值范圍.
解:根據(jù)題意,得或
分別解這兩個不等式組,得x>2或x<-3.
故當x>2或x<-3時,(x-2)(6+2x)>0.
。1)由(x-2)(6+2x)>0,得出不等式組或體現(xiàn)了____思想.
。2)試利用上述方法,求不等式(x-3)(1-x)<0的解集.
附加題(15分,不計入總分)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某工廠計劃用庫存的302m3木料為某學校生產(chǎn)500套桌椅,供該校1250名學生使用,該廠生產(chǎn)的桌椅分為A,B兩種型號,有關(guān)數(shù)據(jù)如下:
桌椅型號 | 一套桌椅所坐學生人數(shù)(單位:人) | 生產(chǎn)一套桌椅所需木材(單位:m3) | 一套桌椅的生產(chǎn)成本(單位:元) | 一套桌椅的運費(單位:元) |
A | 2 | 0.5 | 100 | 2 |
B | 3 | 0.7 | 120 | 4 |
設(shè)生產(chǎn)A型桌椅x(套),生產(chǎn)全部桌椅并運往該校的總費用(總費用=生產(chǎn)成本+運費)為y元.
(1)求y與x之間的關(guān)系式,并指出x的取值范圍;
(2)當總費用y最小時,求相應(yīng)的x值及此時y的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
⑴如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).
求證:對任意一個完全平方數(shù)m,總有F(m)=1;
⑵如果一個兩位正整數(shù)t,t =10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為54,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有的“吉祥數(shù)”;
⑶在⑵所得“吉祥數(shù)”中,求 F(t)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com