科目: 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=的圖象經(jīng)過A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過點(diǎn)A,在第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)圖象上,過點(diǎn)B做BC∥x軸,交y軸于點(diǎn)C,且AC=AB,求:
(1)這個(gè)反比例函數(shù)的解析式;
(2)ΔABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】規(guī)定兩數(shù)、之間的一種運(yùn)算,記作(,);如果,那么(,)=c.
例如:因?yàn)?/span>,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:(4,16)=_________,(7,1)=___________,(_______,)=-2.
(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象:(,)=(3,4)小明給出了如下的證明:
設(shè)(,)=,則,即
所以,即(3,4)=,
所以(,)=(3,4).
請(qǐng)你嘗試運(yùn)用這種方法解決下列問題:
①證明:(6,45)-(6,9)=(6,5)
②猜想:(,)+(,)=(____________,____________),(結(jié)果化成最簡(jiǎn)形式).
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系xOy中,拋物線W的函數(shù)表達(dá)式為y=﹣x2+2x+3,拋物線W與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,它的頂點(diǎn)為D,直線l經(jīng)過A、C兩點(diǎn).
(1)求點(diǎn)A、B、C、D的坐標(biāo).
(2)將直線l向下平移m個(gè)單位,對(duì)應(yīng)的直線為l′.
①若直線l′與x軸的正半軸交于點(diǎn)E,與y軸的正半軸交于點(diǎn)F,△AEF的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
②求m的值為多少時(shí),S的值最大?最大值為多少?
(3)若將拋物線W也向下平移m單位,再向右平移1個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)P落在△AOC的內(nèi)部(不包括△AOC的邊界),請(qǐng)直接寫出m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與實(shí)踐
問題情境
在綜合實(shí)踐課上,老師讓同學(xué)們“以三角形的旋轉(zhuǎn)”為主題進(jìn)行數(shù)學(xué)活動(dòng),如圖(1),在三角形紙片ABC中,AB=AC,∠B=∠C=α.
操作發(fā)現(xiàn)
(1)創(chuàng)新小組將圖(1)中的△ABC以點(diǎn)B為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)角度α,得到△DBE,再將△ABC以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)角度α,得到△AFG,連接DF,得到圖(2),則四邊形AFDE的形狀是 .
(2)實(shí)踐小組將圖(1)中的△ABC以點(diǎn)B為旋轉(zhuǎn)中心,逆時(shí)針逆轉(zhuǎn)90°,得到△DBE,再將△ABC以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△AFG,連接DF、DG、AE,得到圖(3),發(fā)現(xiàn)四邊形AFDB為正方形,請(qǐng)你證明這個(gè)結(jié)論.
拓展探索
(3)請(qǐng)你在實(shí)踐小組操作的基礎(chǔ)上,再寫出圖(3)中的一個(gè)特殊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,BD是∠ABC的平分線,AB=BC,點(diǎn)P在BD上,PM⊥AD,PN⊥CD,垂足分別是M、N.
(1)求證:PM=PN;
(2)聯(lián)結(jié)MN,求證:PD是MN的垂直平分線.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了響應(yīng)國家“自主創(chuàng)業(yè)”的號(hào)召,某大學(xué)畢業(yè)生開辦了一個(gè)裝飾品商店,采購了一種今年剛上市的飾品進(jìn)行了30天的試銷,購進(jìn)價(jià)格為20元/件,銷售結(jié)束后,得知日銷售量P(件)與銷售時(shí)間x(天)之間的關(guān)系如圖(1)所示,銷售價(jià)格Q(元/件)與銷售時(shí)間x(天)之間的關(guān)系如圖(2)所示.
(1)根據(jù)圖象直接寫出:日銷售量P(件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式為 ;銷售單價(jià)
Q(元/件)與銷售時(shí)間x(天)的函數(shù)關(guān)系式為 .(不要求寫出自變量的取值范圍)
(2)寫出該商品的日銷售利潤W(元)和銷售時(shí)間x(天)之間的函數(shù)關(guān)系式;(不要求寫出自變量的取值范圍)
(3)請(qǐng)問在30天的試銷售中,哪一天的日銷售利潤最大?并求出這個(gè)最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料,完成相應(yīng)學(xué)習(xí)任務(wù):
四點(diǎn)共圓的條件
我們知道,過任意一個(gè)三角形的三個(gè)頂點(diǎn)能作一個(gè)圓,過任意一個(gè)四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓嗎?小明經(jīng)過實(shí)踐探究發(fā)現(xiàn):過對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓,下面是小明運(yùn)用反證法證明上述命題的過程:
已知:在四邊形ABCD中,∠B+∠D=180°.
求證:過點(diǎn)A、B、C、D可作一個(gè)圓.
證明:如圖(1),假設(shè)過點(diǎn)A、B、C、D四點(diǎn)不能作一個(gè)圓,過A、B、C三點(diǎn)作圓,若點(diǎn)D在圓外,設(shè)AD與圓相交于點(diǎn)E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出現(xiàn)矛盾,故假設(shè)不成立,因此點(diǎn)D在過A、B、C三點(diǎn)的圓上.
如圖(2)假設(shè)過點(diǎn)A、B、C、D四點(diǎn)不能作一個(gè)圓,過A、B、C三點(diǎn)作圓,若點(diǎn)D在圓內(nèi),設(shè)AD的延長線與圓相交于點(diǎn)E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠ADC=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出現(xiàn)矛盾,故假設(shè)不成立,因此點(diǎn)D在過A、B、C三點(diǎn)的圓上.
因此得到四點(diǎn)共圓的條件:過對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓.
學(xué)習(xí)任務(wù):
(1)材料中劃線部分結(jié)論的依據(jù)是 .
(2)證明過程中主要體現(xiàn)了下列哪種數(shù)學(xué)思想: (填字母代號(hào)即可)
A、函數(shù)思想 B、方程思想 C、數(shù)形結(jié)合思想 D、分類討論思想
(3)如圖(3),在四邊形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,則求∠ADB的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正比例函數(shù)圖象經(jīng)過(﹣2,4).
(1)如果點(diǎn)(a,1)和(﹣1,b)在函數(shù)圖象上,求a,b的值;
(2)過圖象上一點(diǎn)P作y軸的垂線,垂足為Q,S△OPQ=,求Q的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】元旦期間,某商場(chǎng)設(shè)置了如圖所示的幸運(yùn)轉(zhuǎn)盤,轉(zhuǎn)盤分成4個(gè)大小相同的扇形,分別標(biāo)有數(shù)學(xué)1,2,3,4,指針的位置固定,轉(zhuǎn)盤可以自由轉(zhuǎn)動(dòng),當(dāng)轉(zhuǎn)動(dòng)的轉(zhuǎn)盤停止后,其中的某個(gè)扇形會(huì)停在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚(gè)扇形的交線時(shí),當(dāng)作右邊的扇形).商場(chǎng)規(guī)定:凡是參加抽獎(jiǎng)的顧客均可轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,如果兩次轉(zhuǎn)動(dòng)中指針指缶扇形上的數(shù)字之和為8是一等獎(jiǎng),數(shù)字之和為7是二等獎(jiǎng),數(shù)字之和為6是三等獎(jiǎng),標(biāo)號(hào)之和為其他數(shù)字則獲得一份紀(jì)念品,請(qǐng)分別求出顧客抽中一、二、三等獎(jiǎng)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com