科目: 來源: 題型:
【題目】根據(jù)下列證明過程填空:
如圖,BD⊥AC,EF⊥AC,D、F分別為垂足,且∠1=∠4,求證:∠ADG=∠C
證明:∵BD⊥AC,EF⊥AC
∴∠2=∠3=90°
∴BD∥EF ( )
∴∠4=_____ ( )
∵∠1=∠4
∴∠1=_____
∴DG∥BC ( )
∴∠ADG=∠C( )
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經過點E,且交BC于點F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,AB=AC,∠ABC的平分線交AC于點D,在AB的延長線上截取BE,使BE=CD,連接DE交BC于點F.
(1)如圖1,當∠CAB=60°時,若AB=2,求DE的長度;
(2)如圖2,當∠CAB≠60°時,求證:BE=2BF.
查看答案和解析>>
科目: 來源: 題型:
【題目】在眉山市開展城鄉(xiāng)綜合治理的活動中,需要將、、三地的垃圾50立方米、40立方米、50立方米全部運往垃圾處理場、兩地進行處理.已知運往地的數(shù)量比運往地的數(shù)量的2倍少10立方米.
(1)求運往兩地的數(shù)量各是多少立方米?
(2)若地運往地立方米為整數(shù)),地運往地30立方米,地運往地的數(shù)量小于地運往地的2倍.其余全部運往地,且地運往地不超過12立方米,則、兩地運往、兩地哪幾種方案?
(3)已知從、、三地把垃圾運往、兩地處理所需費用如下表:
地 | 地 | 地 | |
運往地(元立方米) | 22 | 20 | 20 |
運往地(元立方米) | 20 | 22 | 21 |
在(2)的條件下,請說明哪種方案的總費用最少?
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與探究:如圖,已知AM∥BN,∠A=60°,點P是射線AM上一動點(與點A不重合).BC,BD別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠ABN、∠CBD的度數(shù);根據(jù)下列求解過程填空.
解:∵AM∥BN,
∴∠ABN+∠A=180°
∵∠A=60°,
∴∠ABN= ,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP、∠PBN= ,( )
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP= .
(2)當點P運動時,∠APB與∠ADB之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當點P運動到使∠ACB=∠ABD時,直接寫出∠ABC的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,萬州市居民生活用水按階梯式水價計費,表是該市居民“一戶一表”生活用水階梯式計費價格表的一部分信息:(水價計費自來水銷售費用污水處理費用)
自來水銷售價格 | 污水處理價格 | |
每戶每月用水量 | 單價:元噸 | 單價:元噸 |
17噸及以下 | 0.80 | |
超過17噸不超過30噸的部分 | 0.80 | |
超過30噸的部分 | 6.00 | 0.80 |
說明:①每戶產生的污水量等于該戶的用水量,②水費=自來水費+污水處理費;
已知小明家2013年3月份用水20噸,交水費66元;5月份用水25噸,交水費91元.
(1)求,的值.
(2)隨著夏天的到來,用水量將增加。為了節(jié)省開支,小夢計劃把6月份的水費控制在不超過家庭月收入的2%,若小夢加的月收入為9200元,則小王家6月份最多能用水多少噸?
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面的證明過程,指出其錯誤.(在錯誤部分下方劃線)已知△ABC,求證:∠A+∠B+∠C=180°
(1)證明:過A作DE∥BC,且使∠1=∠C
∵DE∥BC(作圖)
∴∠2=∠B(內錯角相等兩直線平行)
∵∠1=∠C(作圖)
∴∠B+∠C+∠3=∠2+∠1+∠3(等量代換)
∠2+∠l+∠3=180°(周角的定義)
即∠BAC+∠B+∠C=180°(等量代換)
(2)類比探究:請同學們參考圖2,模仿(1)的解決過程,避免(1)中的錯誤,試說明求證:∠A+∠B+∠C=180°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(p,0),B(0,q),且p、q滿足(p﹣2)2+=0.
(1)求直線AB的解析式;
(2)若點M為直線y=mx上一點,且△ABM是以AB為底的等腰直角三角形,求m值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com