科目: 來源: 題型:
【題目】如圖,已知直線y=kx+b與反比例函數(shù)y=的圖象交于A(1,m)、B兩點(diǎn),與x 軸、y軸分別相交于C(4,0)、D兩點(diǎn).
(1)求直線y=kx+b的解析式;
(2)連接OA、OB,求△AOB的面積;
(3)直接寫出關(guān)于x的不等式kx+b<的解集是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(x>y),下列四個說法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中說法正確的結(jié)論有______________
查看答案和解析>>
科目: 來源: 題型:
【題目】觀察下面各圖,尋找對頂角(不含平角)
(1)如圖(1),圖中共有________對不同的對頂角.
(2)如圖(2),圖中共有________對不同的對頂角.
(3)如圖(3),圖中共有________對不同的對頂角.
(4)研究(1)~(3)小題中直線條數(shù)與對頂角的對數(shù)之間的關(guān)系,若有條直線相交于一點(diǎn),則可形成________對不同的對頂角.
(5)計(jì)算2013條直線相交于一點(diǎn),則可形成________對不同的對頂角.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度數(shù);
(2)若∠BOF=36°,求∠AOC的度數(shù);
(3)若|∠AOC﹣∠BOF|=α°,請直接寫出∠AOC和∠BOF的度數(shù).(用含的代數(shù)式表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn)(A在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C,對稱軸為直線x=,OA=2,OD平分∠BOC交拋物線于點(diǎn)D(點(diǎn)D在第一象限);
(1)求拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)點(diǎn)M是拋物線上的動點(diǎn),在x軸上存在一點(diǎn)N,使得A、D、M、N四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的坐標(biāo);
(3)在拋物線的對稱軸上,是否存在一點(diǎn)P,使得△BPD的周長最?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)求證:DE與⊙O相切;
(3)若BC=18,AB=12,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將△ABC沿著射線BC方向平移至△A′B′C′,使點(diǎn)A′落在∠ACB的外角平分線CD上,連結(jié)AA′.
(1)判斷四邊形ACC′A′的形狀,并說明理由;
(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=,求CB′的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是放在地面上的一個長方體盒子,其中,在線段的三等分點(diǎn)(E=3)處有一只螞蟻,中點(diǎn)處有一米粒,則螞蟻沿長方體表面爬到米粒處的最短距離為( )
A.10
B.
C.5+
D.6+
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=kx+2k(k≠0)與x軸交于點(diǎn)B,與雙曲線交于點(diǎn)A、C,其中點(diǎn)A在第一象限,點(diǎn)C在第三象限.
(1)求B點(diǎn)的坐標(biāo);
(2)若S△AOB=2,求A點(diǎn)的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)P,使△AOP是等腰三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com