科目: 來源: 題型:
【題目】如圖,菱形ABCD的對角線交于點O,點E是菱形外一點,DE∥AC,CE∥BD.
(1)求證:四邊形DECO是矩形;
(2)連接AE交BD于點F,當(dāng)∠ADB=30°,DE=2時,求AF的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)A→C( , ),B→D( , );
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(3)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),請在圖中標(biāo)出依次行走停點E、F、M、N的位置.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校計劃開設(shè)4門選修課:音樂、繪畫、體育、舞蹈,學(xué)校采取隨機抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門),對調(diào)查結(jié)果進(jìn)行統(tǒng)計后,繪制了如下不完整的兩個統(tǒng)計圖.
根據(jù)以上統(tǒng)計圖提供的信息,回答下列問題:
(1)此次調(diào)查抽取的學(xué)生人數(shù)為a= 人,其中選擇“繪畫”的學(xué)生人數(shù)占抽樣人數(shù)的百分比為b= ;
(2)補全條形統(tǒng)計圖;
(3)若該校有2000名學(xué)生,請估計全校選擇“繪畫”的學(xué)生大約有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】下列按照一定規(guī)律排列一組圖形,其中圖形①中共有2個小三角形,圖形②中共有6個小“三角形,圖形③中共有11個小三角形,圖形④中共有17個小三角形,……,按此規(guī)律,圖形⑧中共有個小三角形,這里的( ).
A.32B.41C.51D.53
查看答案和解析>>
科目: 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當(dāng)點P在B、D兩點之間運動時,問∠APC與α、β之間有何數(shù)量關(guān)系?請說明理由;
(3)在(2)的條件下,如果點P在B、D兩點外側(cè)運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】某MP3生產(chǎn)商2014年各季度的產(chǎn)值情況如下表:(單位:萬元) 季度第一季度第二季度第三季度第四季度產(chǎn)值10205060.
(1)根據(jù)表中的數(shù)據(jù)繪制成折線統(tǒng)計圖;
(2)第四季度的產(chǎn)值比第一季度的產(chǎn)值增加百分之幾?
季度 | 第一季度 | 第二季度 | 第三季度 | 第四季度 |
產(chǎn)值 | 10 | 20 | 50 | 60 |
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解學(xué)生課外閱讀的喜好,某校從八年級隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作“其它”類統(tǒng)計。圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖。以下結(jié)論不正確的是( )
A. 由這兩個統(tǒng)計圖可知喜歡“科普常識”的學(xué)生有90人.
B. 若該年級共有1200名學(xué)生,則由這兩個統(tǒng)計圖可估計喜愛“科普常識”的學(xué)生約有360個.
C. 由這兩個統(tǒng)計圖不能確定喜歡“小說”的人數(shù).
D. 在扇形統(tǒng)計圖中,“漫畫”所在扇形的圓心角為72°.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=6,DC=7,點H為AD上一點,并且AH=2,點E為AB上一動點,以HE為邊長作菱形HEFG,并且使點G在CD邊上,連接CF
(1)如圖1,當(dāng)DG=2時,求證:四邊形EFGH為正方形;
(2)如圖2,當(dāng)DG=6時,求△CGF的面積;
(3)當(dāng)DG的長度為何值時,△CGF的面積最小,并求出△CGF面積的最小值;
查看答案和解析>>
科目: 來源: 題型:
【題目】在“五一”期間,小明和他的父親坐游船從甲地到乙地觀光,在售票大廳他們看到了表(一),在游船上,他又注意到了表(二).
表(一)
里程(千米) | 票價(元) | |
甲→乙 | 20 | … |
甲→丙 | 16 | … |
甲→丁 | 10 | … |
… | … | … |
表(二)
出發(fā)時間 | 到達(dá)時間 | |
甲→乙 | 8:00 | 9:00 |
乙→甲 | 9:20 | 10:00 |
甲→乙 | 10:20 | 11:20 |
… | … | … |
爸爸對小明說:“我來考考你,若船在靜水中的速度保持不變,你能知道船在靜水中的速度和水流速度嗎?”小明很快得出了答案,你知道小明是如何算的嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com