相關習題
 0  356310  356318  356324  356328  356334  356336  356340  356346  356348  356354  356360  356364  356366  356370  356376  356378  356384  356388  356390  356394  356396  356400  356402  356404  356405  356406  356408  356409  356410  356412  356414  356418  356420  356424  356426  356430  356436  356438  356444  356448  356450  356454  356460  356466  356468  356474  356478  356480  356486  356490  356496  356504  366461 

科目: 來源: 題型:

【題目】如圖,在半徑為6cm的⊙O中,點A是劣弧BC的中點,點D是優(yōu)弧BC上一點,且∠D=30°,下列四個結論:①OABC;BC=6cm;sinAOB=;④四邊形ABOC是菱形.其中正確結論的序號是( )

A. ①③ B. ①②③④ C. ②③④ D. ①③④

查看答案和解析>>

科目: 來源: 題型:

【題目】電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費辦法.若某戶居民每月應交電費y(元)與用電量x(度)的函數(shù)圖象是一條折線(如圖所示),根據(jù)圖象解下列問題:

(1) 分別寫出當0≤x≤100和x>100時,yx的函數(shù)關系式

(2) 利用函數(shù)關系式,說明電力公司采取的收費標準

(3) 若該用戶某月用電62度,則應繳費多少元?若該用戶某月繳費105元時,則該用戶該月用了多少度電?

查看答案和解析>>

科目: 來源: 題型:

【題目】下列圖案中既是中心對稱圖形,又是軸對稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:如圖,△ABC中,∠ABC45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點F,HBC邊的中點,連結DHBE相交于點G

1)求證:BFAC;

2)求證:CEBF

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知拋物線(m>0)與x軸相交于點A,B,與y軸相交于點C,且點A在點B的左側.

(1)若拋物線過點(2,2),求拋物線的解析式;

(2)在(1)的條件下,拋物線的對稱軸上是否存在一點H,使AH+CH的值最小,若存在,求出點H的坐標;若不存在,請說明理由;

(3)在第四象限內,拋物線上是否存在點M,使得以點A,B,M為頂點的三角形與△ACB相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點EAC上(且不與點AC重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1)請直接寫出線段AF,AE的數(shù)量關系 ;

2)將△CED繞點C逆時針旋轉,當點E在線段BC上時,如圖,連接AE,請判斷線段AF,AE的數(shù)量關系,并證明你的結論;

3)在圖的基礎上,將△CED繞點C繼續(xù)逆時針旋轉,請判斷(2)問中的結論是否發(fā)生變化?若不變,結合圖寫出證明過程;若變化,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】模型介紹:古希臘有一個著名的“將軍飲馬問題”,大致內容如下:古希臘一位將軍,每天都要巡查河岸側的兩個軍營A、B,他總是先去A營,再到河邊飲馬,之后再去B營,如圖①,他時常想,怎么走才能使每天的路程之和最短呢?

大數(shù)學家海倫曾用軸對稱的方法巧妙的解決了這問題.

如圖②,作B關于直線l的對稱點B′,連接AB′與直線l交于點C,點C就是所求的位置.

請你在下列的閱讀、應用的過程中,完成解答.

(1)理由:如圖③,在直線l上另取任一點C′,連接AC′,BC′,B′C′,

∵直線l是點B,B′的對稱軸,點C,C′在l上,

∴CB=_______,C′B=_______.

∴AC+CB=AC+CB′=_______

在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.

歸納小結:

本問題實際是利用軸對稱變換的思想,把A、B在直線的同側問題轉化為在直線的兩側,從而可利用“兩點之間線段最短”,即轉化為“三角形兩邊之和大于第三邊”的問題加以解決(其中C為AB′與l的交點,即A、C、B′三點共線).

本問題可拓展為“求定直線上一動點與直線外兩定點的距離和的最小值”問題的數(shù)學模型.

(2)模型應用

如圖 ④,正方形ABCD的邊長為2,E為AB的中點,F(xiàn)是AC上一動點,求EF+FB的最小值.

解決這個問題,可以借助上面的模型,由正方形的對稱性可知,B與D關于直線AC對稱,連接ED交AC于F,則EF+FB的最小值就是線段DE的長度,EF+FB的最小值是_______

如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點B是弧AD的中點,在直徑CD上找一點P,使BP+AP的值最小,則BP+AP的最小值是_______;

如圖⑥,一次函數(shù)y=-2x+4的圖象與x,y軸分別交于A,B兩點,點O為坐標原點,點C與點D分別為線段OA,AB的中點,點P為OB上一動點,求PC+PD的最小值,并寫出取得最小值時P點坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校運動會需購買A、B兩種獎品共100B兩種獎品單價分別為10元、15設購買A種獎品m件,購買兩種獎品的總費用為W元.

寫出之間的函數(shù)關系式;

若購買兩種獎品的總費用不超過1150元,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,求出自變量m的取值范圍,并確定最少費用W的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在數(shù)學實踐課上,老師在黑板上畫出如下的圖形(其中點BF、C、E在同一條直線上),并寫出四個條件:①ABDE,②∠1=2.BFEC,④∠BE,交流中老師讓同學們從這四個條件中選出三個作為題設,另一個作為結論,組成一個真命題.

(1)寫出所有的真命題.(用序號表示題設、結論)

(2)請選擇一個給予證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖:已知ABC中,AB=ACBAC=90°,直角EPF的頂點PBC邊上的中點,兩邊PE,PF分別交ABAC于點E,F,給出以下四個結論:

AE=CF;②EF=AP;③2S四邊形AEPF=SABC;④當EPFABC內繞頂點P旋轉時(點E不與A,B重合)有BE+CF=EF;上述結論中始終正確的序號有__________

查看答案和解析>>

同步練習冊答案