相關習題
 0  357839  357847  357853  357857  357863  357865  357869  357875  357877  357883  357889  357893  357895  357899  357905  357907  357913  357917  357919  357923  357925  357929  357931  357933  357934  357935  357937  357938  357939  357941  357943  357947  357949  357953  357955  357959  357965  357967  357973  357977  357979  357983  357989  357995  357997  358003  358007  358009  358015  358019  358025  358033  366461 

科目: 來源: 題型:

【題目】反比例函數y=(k為常數,且k≠0)的圖象經過點A(1,3)、B(3,m).

(1)求反比例函數的解析式及B點的坐標;

(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四邊形ABCD⊙O的內接四邊形,AC⊙O的直徑,DE⊥AB,垂足為E.

(1)延長DE⊙O于點F,延長DC,FB交于點P,如圖1.求證:PC=PB;

(2)過點BBG⊥AD,垂足為G,BGDE于點H,且點O和點A都在DE的左側,如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】求證:相似三角形對應邊上的中線之比等于相似比.

要求:①根據給出的△ABC及線段A'B′,A′(A′=A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;

②在已有的圖形上畫出一組對應中線,并據此寫出已知、求證和證明過程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線ly=x,過點A1(1,0)作A1B1x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3;……,按此作法進行下去,則點An的坐標為_______

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F,且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=6,BD=6,EBC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目: 來源: 題型:

【題目】在一張長方形紙片ABCD中,AB=25cm,AD=20cm,現將這張紙片按下列圖示方法折疊,請解決下列問題.

(1)如圖(1),折痕為DE,點A的對應點F在CD上,求折痕DE的長;

(2)如圖(2),H,G分別為BC,AD的中點,A的對應點F在HG上,折痕為DE,求重疊部分的面積;

(3)如圖(3),在圖(2)中,把長方形ABCD沿著HG對開,變成兩張長方形紙片,按圖示方式將兩張紙片任意疊合后,判斷重疊四邊形的形狀,并證明;

(4)在(3)中,重疊四邊形的周長是否存在最大值或最小值?如果存在,試求出來;如果不存在,試簡要說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】關于的一元二次方程有兩個不相等的實數根、

(1)求的取值范圍;

(2)求證:<0,<0;

(3)若,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下面的例題,范例:解方程,

解:(1)當≥0時,原方程化為,解得:(不合題意,舍去).

(2)當<0時,原方程化為,解得:(不合題意,舍去).

∴原方程的根是

請參照例題解方程

查看答案和解析>>

科目: 來源: 題型:

【題目】在四邊形 ABCD 中,E BC 邊中點.

)已知:如圖,若 AE 平分BAD,AED=90°,點 F AD 上一點,AF=AB.求證:(1ABEAFE;(2AD=AB+CD

)已知:如圖,若 AE 平分BADDE 平分ADC,AED=120°,點 F,G 均為 AD上的點,AF=AB,GD=CD.求證:(1GEF 為等邊三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

同步練習冊答案