科目: 來源: 題型:
【題目】(本題滿分12分)已知二次函數(shù)的圖象如圖.
(1)求它的對稱軸與軸交點D的坐標(biāo);
(2)將該拋物線沿它的對稱軸向上平移,設(shè)平移后的拋物線與軸,軸的交點分別為A、B、C三點,若∠ACB=90°,求此時拋物線的解析式;
(3)設(shè)(2)中平移后的拋物線的頂點為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),直線l是拋物線的對稱軸.
(1)求該拋物線的解析式.
(2)若過點A(﹣1,0)的直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,求此直線的解析式.
(3)點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB=AC,AD=AE,若添加一個條件不能得到“△ABD≌△ACE”是( )
A. ∠ABD=∠ACE B. BD=CE C. ∠BAD=∠CAE D. ∠BAC=∠DAE
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場銷售某種品牌的手機(jī),每部進(jìn)貨價為2500元.市場調(diào)研表明:當(dāng)銷售價為2900元時,平均每天能售出8部;而當(dāng)銷售價每降低50元時,平均每天就能多售出4部.
(1)當(dāng)售價為2800元時,這種手機(jī)平均每天的銷售利潤達(dá)到多少元?
(2)若設(shè)每部手機(jī)降低x元,每天的銷售利潤為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(3)商場要想獲得最大利潤,每部手機(jī)的售價應(yīng)訂為為多少元?此時的最大利潤是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點旋轉(zhuǎn)到圖②位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請給予證明;
(3)若直線AE繞A點旋轉(zhuǎn)到圖③位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請直接寫出結(jié)果, 不需證明.
(4)根據(jù)以上的討論,請用簡潔的語言表達(dá)BD與DE,CE的數(shù)量關(guān)系。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中點,連結(jié)BE并延長交AD的延長線于G.
(1)求證:DG=BC;
(2)F是AB邊上的動點,當(dāng)F點在什么位置時,FD∥BG;說明理由.
(3)在(2)的條件下,連結(jié)AE交FD于H,FH與HD長度關(guān)系如何?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在實數(shù)的計算過程中去發(fā)現(xiàn)規(guī)律.
(1)5>2,而<,規(guī)律:若a>b>0,那么與的大小關(guān)系是: .
(2)對于很小的數(shù)0.1、0.001、0.00001,它們的倒數(shù)= ;= ;= .規(guī)律:當(dāng)正實數(shù)x無限。o限接近于0),那么它的倒數(shù) .
(3)填空:若實數(shù)x的范圍是0<x<2,寫出的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com