科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知直線y=-x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),C點(diǎn)坐標(biāo)為(﹣2,0).
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(2)如果M為拋物線的頂點(diǎn),聯(lián)結(jié)AM、BM,求四邊形AOBM的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到平行四邊形A′B′OC′.拋物線y=﹣x2+2x+3經(jīng)過點(diǎn)A、C、A′三點(diǎn).
(1)求A、A′、C三點(diǎn)的坐標(biāo);
(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△C′OD的面積;
(3)點(diǎn)M是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并寫出此時(shí)M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)Q、E、F分別在BC、AB、AC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).
(1)當(dāng)AE=8時(shí),求EF的長;
(2)設(shè)AE=x,矩形EFPQ的面積為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x為何值時(shí),y有最大值,最大值是多少?
(3)當(dāng)矩形EFPQ的面積最大時(shí),將矩形EFPQ以每秒1個(gè)單位的速度沿射線CB勻速向右運(yùn)動(dòng)(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是由邊長為1的小正方形組成的8×4網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),點(diǎn)A,B,C,D均在格點(diǎn)上,在網(wǎng)格中將點(diǎn)D按下列步驟移動(dòng):
第一步:點(diǎn)D繞點(diǎn)A順時(shí)針旋轉(zhuǎn)180°得到點(diǎn)D1;
第二步:點(diǎn)D1繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D2;
第三步:點(diǎn)D2繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°回到點(diǎn)D.
(1)請(qǐng)用圓規(guī)畫出點(diǎn)D→D1→D2→D經(jīng)過的路徑;
(2)所畫圖形是什么對(duì)稱圖形;
(3)求所畫圖形的周長(結(jié)果保留π).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)O在∠APB的平分線上,⊙O與PA相切于點(diǎn)C.
(1)求證:直線PB與⊙O相切;
(2)PO的延長線與⊙O交于點(diǎn)E.若⊙O的半徑為3,PC=4.求弦CE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是“作出弧AB所在的圓”的尺規(guī)作圖過程.
已知:弧AB.
求作:弧AB所在的圓.
作法:如圖,
(1)在弧AB上任取三個(gè)點(diǎn)D,C,E;
(2)連接DC,EC;
(3)分別作DC和EC的垂直平分線,兩垂直平分線的交點(diǎn)為點(diǎn)O.
(4)以 O為圓心,OC長為半徑作圓,所以⊙O即為所求作的弧AB所在的圓.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】結(jié)果如此巧合!
下面是小穎對(duì)一道題目的解答.
題目:如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,AD=3,BD=4,求△ABC的面積.
解:設(shè)△ABC的內(nèi)切圓分別與AC、BC相切于點(diǎn)E、F,CE的長為x.
根據(jù)切線長定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根據(jù)勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=ACBC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小穎發(fā)現(xiàn)12恰好就是3×4,即△ABC的面積等于AD與BD的積.這僅僅是巧合嗎?
請(qǐng)你幫她完成下面的探索.
已知:△ABC的內(nèi)切圓與AB相切于點(diǎn)D,AD=m,BD=n.
可以一般化嗎?
(1)若∠C=90°,求證:△ABC的面積等于mn.
倒過來思考呢?
(2)若ACBC=2mn,求證∠C=90°.
改變一下條件……
(3)若∠C=60°,用m、n表示△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮煨购?/span>,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目: 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com