相關(guān)習(xí)題
 0  360943  360951  360957  360961  360967  360969  360973  360979  360981  360987  360993  360997  360999  361003  361009  361011  361017  361021  361023  361027  361029  361033  361035  361037  361038  361039  361041  361042  361043  361045  361047  361051  361053  361057  361059  361063  361069  361071  361077  361081  361083  361087  361093  361099  361101  361107  361111  361113  361119  361123  361129  361137  366461 

科目: 來源: 題型:

【題目】已知拋物線(b,c為常數(shù))

1)若拋物線的頂點坐標(biāo)為(11),求b,c的值;

2)若拋物線上始終存在不重合的兩點關(guān)于原點對稱,求c的取值范圍;

3)在(1)的條件下,存在正實數(shù)m,n( mn),當(dāng)mxn時,恰好有,求m,n的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1中,內(nèi)一點,將繞點按逆時針方向旋轉(zhuǎn)角得到,點的對應(yīng)點分別為點,且三點在同一直線上.

1)填空:   (用含的代數(shù)式表示);

2)如圖2,若,請補全圖形,再過點于點,然后探究線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)若,且點滿足,直接寫出點的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AB⊙O的弦,過點OOC⊥OA,OC交于ABP,且CP=CB

1)求證:BC⊙O的切線;

2)已知∠BAO=25°,點Q是弧AmB上的一點.

①求∠AQB的度數(shù);

②若OA=18,求弧AmB的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,已知拋物線y=x2+bx+c經(jīng)過點A(-1,0),B(5,0).

(1)求拋物線的解析式并寫出頂點M的坐標(biāo);

(2)若點C在拋物線上,且點C的橫坐標(biāo)為8,求四邊形AMBC的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在同一直角坐標(biāo)系中,一次函數(shù)yaxb和二次函數(shù)y=﹣ax2b的大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校組織數(shù)學(xué)興趣探究活動,愛思考的小實同學(xué)在探究兩條直線的位置關(guān)系查閱資料時發(fā)現(xiàn),兩條中線互相垂直的三角形稱為中垂三角形.如圖1、圖2、圖3中,、的中線,于點,像這樣的三角形均稱為中垂三角形

(特例探究)

1)如圖1,當(dāng),時,_____,______;

如圖2,當(dāng),時,_____,______

(歸納證明)

2)請你觀察(1)中的計算結(jié)果,猜想、三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論;

(拓展證明)

3)如圖4,在中,,,、、分別是邊的中點,連結(jié)并延長至,使得,連結(jié),當(dāng)于點時,求的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+3a≠0)經(jīng)過點A(1,0)和點B(30),與y軸交于點C

1)求此拋物線的解析式;

2)若點P是直線BC下方的拋物線上一動點(不點B,C重合),過點Py軸的平行線交直線BC于點D,設(shè)點P的橫坐標(biāo)為m

①用含m的代數(shù)式表示線段PD的長.

②連接PB,PC,求PBC的面積最大時點P的坐標(biāo).

3)設(shè)拋物線的對稱軸與BC交于點E,點M是拋物線的對稱軸上一點,Ny軸上一點,是否存在這樣的點M和點N,使得以點CE、M、N為頂點的四邊形是菱形?如果存在,請直接寫出點M的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,ABAC,⊙O為△ABC的外接圓,AF為⊙O的直徑,四邊形ABCD是平行四邊形.

1)求證:AD是⊙O的切線;

2)若∠BAC45°,AF2,求陰影部分的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】陽光體育活動時間,小英、小麗、小敏、小潔四位同學(xué)進行一次羽毛球單打比賽,要從中選出兩位同學(xué)打第一場比賽.

1)若已確定小英打第一場,再從其余三位同學(xué)中隨機選取一位,求恰好選中小麗同學(xué)的概率;

2)用畫樹狀圖或列表的方法,求恰好選中小敏、小潔兩位同學(xué)進行比賽的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了4米(BB′),再把竹竿豎立在地面上,測得竹竿的影長(B′C′)為1.8米,求路燈離地面的高度.

查看答案和解析>>

同步練習(xí)冊答案