科目: 來(lái)源: 題型:
【題目】如圖1,A(﹣4,0).正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.
(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式.
(2)若α為銳角,tanα=,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為:1?若能,求點(diǎn)P的坐標(biāo);若不能,試說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=12.點(diǎn)D在直線CB上,以CA,CD為邊作矩形ACDE,直線AB與直線CE,DE的交點(diǎn)分別為F,G,
(1)如圖,點(diǎn)D在線段CB上,四邊形ACDE是正方形.
①若點(diǎn)G為DE的中點(diǎn),求FG的長(zhǎng).
②若DG=GF,求BC的長(zhǎng).
(2)已知BC=9,是否存在點(diǎn)D,使得△DFG是等腰三角形?若存在,求該三角形的腰長(zhǎng);若不存在,試說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖1,地面BD上兩根等長(zhǎng)立柱AB,CD之間有一根繩子可看成拋物線y=0.1x2﹣0.8x+5.
(1)求繩子最低點(diǎn)離地面的距離;
(2)因?qū)嶋H需要,在離AB為5米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面2米,求MN的長(zhǎng);
(3)將立柱MN的長(zhǎng)度提升為5米,通過(guò)調(diào)整MN的位置,使拋物線F2對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)始終為.設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,但2≤k≤3時(shí),求m的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】類(lèi)比梯形的定義,我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):
①小紅畫(huà)了一個(gè)“等對(duì)角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請(qǐng)你證明此結(jié)論;
②由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.
(3)已知:在“等對(duì)角四邊形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對(duì)角線AC的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC的紙片中,∠C=90°,AC=5,AB=13.點(diǎn)D在邊BC上,以AD為折痕將△ADB折疊得到△ADB′,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長(zhǎng)是___.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖矩形,AB=2BC=4,E是AB二等分點(diǎn),直線l平行于直線EC,且直線l與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,沿直線EF折疊矩形ABCD,使點(diǎn)A落在直線l上,則DF=_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)E是邊AB的中點(diǎn),點(diǎn)O是線段AE上的一個(gè)動(dòng)點(diǎn)(不與A、E重合),以O(shè)為圓心,OB為半徑的圓與邊AD相交于點(diǎn)M,過(guò)點(diǎn)M作⊙O的切線交DC于點(diǎn)N,連接OM、ON、BM、BN.記△MNO、△AOM、△DMN的面積分別為S1、S2、S3,則下列結(jié)論不一定成立的是( )
A.S1>S2+S3 B.△AOM∽△DMN C.∠MBN=45° D.MN=AM+CN
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG,點(diǎn)F、G分別在AD,BC上,連接OG、DG,若OG⊥DG,且⊙O的半徑長(zhǎng)為1,則下列結(jié)論不成立的是
A.CD+DF=4B.CDDF=23
C.BC+AB=2+4D.BCAB=2
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知AC是⊙O的直徑,點(diǎn)B在圓周上(不與A、C重合),點(diǎn)D在AC的延長(zhǎng)線上,連接BD交⊙O于點(diǎn)E,若∠AOB=3∠ADB,則( )
A. DE=EB B. DE=EB C. DE=DO D. DE=OB
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最大值與最小值的差是( 。
A.6B.2+1C.9D.7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com