A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 運(yùn)用雙曲線的漸近線方程,可得m=-4n,由條件${y}_{0}^{2}$>4${x}_{0}^{2}$,可得n>0,將雙曲線的方程化為標(biāo)準(zhǔn)方程,求得a,c,由離心率公式即可得到所求值.
解答 解:雙曲線mx2+ny2=1(mn<0)的漸近線方程為
mx2+ny2=0(mn<0),
由漸近線方程為y=2x,可得m=-4n,
雙曲線上的點(diǎn)(x0,y0)滿足${y}_{0}^{2}$>4${x}_{0}^{2}$,
即有ny02-4nx02=1,即為${y}_{0}^{2}$=4${x}_{0}^{2}$+$\frac{1}{n}$>4${x}_{0}^{2}$,
即有n>0,
則雙曲線的方程為$\frac{{y}^{2}}{\frac{1}{n}}$-$\frac{{x}^{2}}{\frac{1}{4n}}$=1,
可得a=$\sqrt{\frac{1}{n}}$,c=$\sqrt{\frac{1}{n}+\frac{1}{4n}}$=$\sqrt{\frac{5}{4n}}$,
離心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故選:A.
點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,考查漸近線方程的運(yùn)用,注意由條件判斷n>0,是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\frac{1}{5}$ | B. | 4$\frac{2}{5}$ | C. | 4$\frac{3}{5}$ | D. | 4$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com