分析 設(shè)A(x1,y1),B(x2,y2),弦AB中點(diǎn)M(x,y),則9x12-16y12=144,9x22-16y22=144,兩式相減,利用M是中點(diǎn)及斜率相等可求M的軌跡方程,從而得到其軌跡.
解答 解:設(shè)A(x1,y1),B(x2,y2),弦AB中點(diǎn)M(x,y),
則9x12-16y12=144,9x22-16y22=144,
兩式相減得9x(x1-x2)-16y(y1-y2)=0,
∴$\frac{9x}{16y}=\frac{y-3}{x-8}$,即9x2-16y2-72x+48y=0,斜率不存在時(shí)也滿足,軌跡為雙曲線.
點(diǎn)評 本題主要考查中點(diǎn)弦問題,設(shè)而不求是常用方法,應(yīng)注意細(xì)細(xì)體會.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行四邊形 | B. | 菱形 | C. | 矩形 | D. | 正方形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)+g(x)及f(x)•g(x)均為增函數(shù) | |
B. | f(x)-g(x)為增函數(shù),f(x)•g(x)的增減性無法確定 | |
C. | f(x)+g(x)及$\frac{f(x)}{φ(x)}$均為增函數(shù) | |
D. | f2(x)為增函數(shù),$\frac{1}{φ(x)}$為增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com