10.若函數(shù)f(x),g(x)均為R上的增函數(shù),φ(x)≠0且為R上的減函數(shù),則下列命題中正確的是(  )
A.f(x)+g(x)及f(x)•g(x)均為增函數(shù)
B.f(x)-g(x)為增函數(shù),f(x)•g(x)的增減性無法確定
C.f(x)+g(x)及$\frac{f(x)}{φ(x)}$均為增函數(shù)
D.f2(x)為增函數(shù),$\frac{1}{φ(x)}$為增函數(shù)

分析 根據(jù)函數(shù)單調(diào)性的性質(zhì)進(jìn)行判斷即可.

解答 解:A.若f(x)=X,則f(x)為增函數(shù),g(x)=x,則g(x)為增函數(shù),則f(x)•g(x)=x2不是單調(diào)函數(shù),故A錯誤,
B.若f(x)=x,則f(x)為增函數(shù),g(x)=x,則g(x)為增函數(shù),則f(x)-g(x)=0不是單調(diào)函數(shù),故B錯誤,
C.正確.
D.若f(x)=x,則f(x)為增函數(shù),則f2(x)=x2在定義域上不是增函數(shù),故D錯誤.
故選:C

點(diǎn)評 本題主要考查函數(shù)單調(diào)性的判斷,根據(jù)函數(shù)單調(diào)性的性質(zhì),利用特殊值法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),A、B是其長軸的兩個端點(diǎn).
(1)過一個焦點(diǎn)F作垂直于長軸的弦PP′,求證:不論a、b如何變化,∠APB≠120°.
(2)如果橢圓上存在一個點(diǎn)Q,使∠AQB=120°,求C的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax+a2,h(x)=ax+2,定義函數(shù)g(x)=$\left\{\begin{array}{l}{f(x)(f(x)≥h(x))}\\{h(x)(f(x)<h(x))}\end{array}\right.$.
(1)當(dāng)a=1時,求g(x)的解析式;
(2)當(dāng)|a-3|≤1+$\sqrt{2}$時,求函數(shù)g(x)在x∈[2,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.滿足條件{(x,y)|$\sqrt{(x-3)^{2}+{y}^{2}}$-$\sqrt{(x+3)^{2}+{y}^{2}}$=6}的點(diǎn)P(x,y)的軌跡是射線AP,方程為y=0(x≤-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=-$\frac{1}{2}$lnx+$\frac{2}{x+1}$.
(1)求證:函數(shù)f(x)有且只有一個零點(diǎn);
(2)對任意實(shí)數(shù)x∈[$\frac{1}{e}$,1](e為自然對數(shù)的底數(shù)),使得對任意t∈[$\frac{1}{2}$,2]恒有f(x)≥t3-t2-2at+2成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.過點(diǎn)P(8,3)的直線與雙曲線9x2-16y2=144相交于A,B兩點(diǎn),求弦AB中點(diǎn)的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=2x-4.
(1)當(dāng)x<0,求f(x)的解析式;
(2)解方程:f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax|ax-2|,(a>0,a≠1)
(1)解方程f(x)=3;
(2)當(dāng)x∈(0,1]時,關(guān)于x的不等式f(x)<3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2-x(4x-m)是奇函數(shù),g(x)=lg(10x+1)+nx是偶函數(shù).
(I)求m+n的值;
(Ⅱ)設(shè)h(x)=$\left\{\begin{array}{l}{f(x)+1,x≤0}\\{g(x)+\frac{1}{2}x,x>0}\end{array}\right.$,試求h(x)在x∈[-2,1]時的最大值.

查看答案和解析>>

同步練習(xí)冊答案