分析 由已知得到三角形為直角三角形,構(gòu)建坐標(biāo)系,求出點(diǎn)P的軌跡方程,由此可以判斷|$\overrightarrow{PA}$|的取值范圍.
解答 解:∵AB=8,BC=10,AC=6,
∴AB2+BC2=BC2,
∴AB⊥AC,
以A為原點(diǎn),以AB為x軸,以AC為y軸,建立坐標(biāo)系,
則A(0,0),B(8,0),C(0,6),
設(shè)P(x,y),(0<x<8,0<y<6),
∴$\overrightarrow{PB}$=(8-x,-y),$\overrightarrow{PC}$=(-x,6-y),
∴$\overrightarrow{PB}$•$\overrightarrow{PC}$=-8x+x2-6y+y2=-9,即(x-4)2+(y-3)2=16,
∵|$\overrightarrow{PA}$|=$\sqrt{{x}^{2}+{y}^{2}}$,
∴當(dāng)P點(diǎn)在AD的連線上時(shí),|$\overrightarrow{PA}$|的取值最小,
∴|$\overrightarrow{PA}$|=|$\overrightarrow{AD}$|-|$\overrightarrow{PD}$|=$\sqrt{{4}^{2}+{3}^{2}}$-4=5-4=1,
當(dāng)P點(diǎn)在x軸上時(shí),|$\overrightarrow{PA}$|的取值最大,
即(x-4)2+(0-3)2=16,
解得x=4+$\sqrt{7}$或x=4-$\sqrt{7}$舍去,
故|$\overrightarrow{PA}$|的取值范圍為[1,4+$\sqrt{7}$]
故答案為:[1,4+$\sqrt{7}$].
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的定義和性質(zhì),圓的有關(guān)知識(shí),考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2-6x-2y+6=0 | B. | x2+y2+6x-2y+6=0 | C. | x2+y2+6x+2y+6=0 | D. | x2+y2-2x-6y+6=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 1或-1 | D. | ±1或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{6}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | -$\frac{7}{8}$ | C. | -$\frac{11}{12}$ | D. | -$\frac{23}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com