12.汽車以10米/秒的速度行駛,在某處需要減速停車,設(shè)汽車以加速度-2米/秒2剎車,若把剎車時(shí)間5等分,則從開始剎車到停車,汽車剎車距離的過(guò)剩近似值為30米.

分析 先求出時(shí)間,再根據(jù)過(guò)剩近似值計(jì)算方法計(jì)算即可.

解答 解:由題意知,v(t)=v0+at=10-2t.
令v(t)=0,得t=5,即t=5秒時(shí),汽車將停車,
將區(qū)間[0,5]5等分,用每個(gè)小區(qū)間的左端點(diǎn)的函數(shù)值近似替代每個(gè)小區(qū)間上的平均速度,
可得汽車剎車距離的過(guò)剩近似值為S=(10+10-2×1+10-2×2+10-2×3+10-2×4)×1=30(米),
故答案為:30米.

點(diǎn)評(píng) 本題的行駛問(wèn)題可以看作勻變速運(yùn)動(dòng),每個(gè)過(guò)程的速度都是平均速度,以及函數(shù)的單調(diào)性與過(guò)剩近似值的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.a(chǎn)、b為非零實(shí)數(shù),且a<b,則下列命題成立的是( 。
A.a2<b2B.$\frac{1}{{a{b^2}}}$<$\frac{1}{{{a^2}b}}$C.a2b<ab2D.$\frac{a}$<$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.對(duì)任意實(shí)數(shù)x,若不等式x+|3x-2a|≥3恒成立,則實(shí)數(shù)a的取值范圍是[$\frac{9}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.方程組$\left\{\begin{array}{l}3x+5y+6=0\\ 4x-3y-7=0\end{array}\right.$的增廣矩陣是$[\begin{array}{l}{3}&{5}&{-6}\\{4}&{-3}&{7}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若線性方程組的增廣矩陣為$(\begin{array}{l}{2}&{3}&{{c}_{1}}\\{3}&{2}&{{c}_{2}}\end{array})$,解為$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$,則c1-c2=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,四棱錐S-ABCD的底面是邊長(zhǎng)為1的正方形,SD垂直于底面ABCD,E為SC的中點(diǎn),SD=AD.
(1)求證:SA∥平面BDE;
(2)求直線SB與平面SAD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.一個(gè)空間幾何體的三視圖如圖所示,其中正視圖與左視圖上方均為等邊三角形,根據(jù)圖中數(shù)據(jù):
(1)求三棱錐外接球表面積
(2)求該幾何體的表面積
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.像“3,4,5”這樣能夠成直角三角形的數(shù)稱為勾股數(shù),又稱為( 。
A.畢達(dá)哥拉斯數(shù)B.楊輝數(shù)C.拉格朗日恒等數(shù)D.三角數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知正六棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)均為2,其三視圖中的俯視圖如圖所示,則其左視圖的面積是4$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案