6.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長、短軸長、焦距成等差數(shù)列,則橢圓的離心率是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 根據(jù)橢圓的長軸長、短軸長、焦距成等差數(shù)列,建立幾何量之間的關(guān)系,即可求得離心率.

解答 解:由題意,橢圓的長軸長、短軸長、焦距成等差數(shù)列,
∴4b=2c+2a
∴2b=c+a
∴4b2=c2+2ac+a2
∴3a2-2ac-5c2=0
∴5e2+2e-3=0
∴(e+1)(5e-3)=0
∴e=$\frac{3}{5}$.
故選:A.

點評 本題考查橢圓的幾何性質(zhì),解題的關(guān)鍵是根據(jù)橢圓的焦距、短軸長、長軸長成等差數(shù)列,建立幾何量之間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ln(1+x)-ln(1-x).
(1)判斷函數(shù)f(x)的奇偶性;
(2)解關(guān)于x的方程f(x)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2x,(-3≤x<2)}\\{{2}^{x-1},(2<x≤3)}\end{array}\right.$,
(1)求函數(shù)f(x)的定義域和值域;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求經(jīng)過P(0,0)、Q(0,1)、R(2,0)三點的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,已知△ABC中,點M在線段AC上,點P在線段BM上且滿足$\frac{AM}{MC}=\frac{MP}{PB}$=2,若$|\overrightarrow{AB}|$=2,$|\overrightarrow{AC}|$=3,∠BAC=120°,則$\overrightarrow{AP}•\overrightarrow{BC}$的值為(  )
A.-2B.2C.$\frac{2}{3}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(文科)已知函數(shù)f(x)=$\left\{\begin{array}{l}-x+2,\;\;\;\;x≥1\\{2^{x-1}},\;\;\;\;\;\;\;x<1\end{array}\right.$,若關(guān)于x的方程f(x)=k有兩個不同的實根,則實數(shù)k的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知兩個向量$\overrightarrow{a}$,$\overrightarrow$的夾角為30°,|$\overrightarrow{a}$|=$\sqrt{3}$,$\overrightarrow$為單位向量,$\overrightarrow{c}$=t$\overrightarrow{a}$+(1-t)$\overrightarrow$,則|$\overrightarrow{c}$|的最小值為$\frac{\sqrt{3}}{2}$.若$\overrightarrow$•$\overrightarrow{c}$=0,則t=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式2x-3y-5≥0表示的平面區(qū)域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若正四面體ABCD的棱長為1,則它的外接球體積為( 。
A.$\frac{\sqrt{6}}{8}$πB.$\frac{3}{2}$πC.$\frac{\sqrt{6}}{2}$πD.$\frac{\sqrt{3}}{4}$π

查看答案和解析>>

同步練習(xí)冊答案