A. | $\frac{\sqrt{6}}{8}$π | B. | $\frac{3}{2}$π | C. | $\frac{\sqrt{6}}{2}$π | D. | $\frac{\sqrt{3}}{4}$π |
分析 由正四面體的棱長,求出正四面體的高,設(shè)外接球半徑為x,利用勾股定理求出x的值,即可求出外接球體積.
解答 解:正四面體的棱長為:1,底面三角形的高:$\frac{\sqrt{3}}{2}$,
棱錐的高為:$\sqrt{1-\frac{1}{3}}$=$\frac{\sqrt{6}}{3}$,
設(shè)外接球半徑為x,
x2=($\frac{\sqrt{6}}{3}$-x)2+($\frac{\sqrt{3}}{3}$)2,解得x=$\frac{\sqrt{6}}{4}$;
所以棱長為1的正四面體的外接球的體積為$\frac{4}{3}π•(\frac{\sqrt{6}}{4})^{3}$=$\frac{\sqrt{6}}{8}π$.
故選:A.
點評 本題考查球的內(nèi)接多面體的知識,關(guān)鍵是明確球半徑與棱錐的高的關(guān)系,考查計算能力,邏輯思維能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{{\sqrt{5}-1}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,-1] | C. | [-1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $-\frac{1}{2}$ | C. | 1 | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com