15.不等式2x-3y-5≥0表示的平面區(qū)域是( 。
A.B.C.D.

分析 根據(jù)二元一次不等式表示平面區(qū)域進行判斷即可.

解答 解:直線對應的斜率為$\frac{2}{3}$>0,則排除B,D,
當x=0,y=0時,0+0-5<0,即(0,0)不知不等式對應的平面區(qū)域內,故排除A,
故選:C

點評 本題主要考查二元一次不等式表示平面區(qū)域,根據(jù)直線定邊,點定域的方法是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.直線方程2x+3+1=0化成斜截式為y=-$\frac{2}{3}$x-$\frac{1}{3}$;化成截距式為$\frac{x}{-\frac{1}{2}}$+$\frac{y}{-\frac{1}{3}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長、短軸長、焦距成等差數(shù)列,則橢圓的離心率是( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=1+logax,(a>0,a≠1),若y=f-1(x)過點(3,4),則a=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{1-sin2x}{sinx-cosx}$
(1)求f(x)的周期;
(2)求f(x)的最大值及取得最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=\sqrt{3}sin2x+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})$.
(Ⅰ)求函數(shù)f(x)圖象的對稱軸方程;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=|x-a|在(-∞,-1)上是單調函數(shù),則a的取值范圍是( 。
A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,x≤0\\{log_2}x{,^{\;}}^{\;}x>0\end{array}\right.$,則$f(f(\frac{1}{2}))$=( 。
A.0B.$-\frac{1}{2}$C.1D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知定義在R上的奇函數(shù)f(x)滿足
①對任意的x都有f(x+4)=f(x)成立;
②當x∈[0,2]時,f(x)=2-2|x-1|,
則$f(x)=\frac{1}{|x|}$在[-4,4]上根的個數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案