分析 命題p:方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{4-k}$=1表示焦點在x軸上的橢圓,則k>4-k>0,解得k范圍.命題q:(k-1)x2+(k-3)y2=1表示雙曲線,則(k-1)(k-3)<0,解得k范圍.利用p∨q為真命題,即可得出.
解答 解:命題p:方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{4-k}$=1表示焦點在x軸上的橢圓,則k>4-k>0,解得2<k<4.
命題q:(k-1)x2+(k-3)y2=1表示雙曲線,則(k-1)(k-3)<0,解得1<k<3.
∵p∨q為真命題,
∴實數(shù)k的取值范圍是(2,4)∪(1,3)=(1,4).
故答案為:(1,4).
點評 本題考查了復(fù)合命題真假的判定方法、不等式的解法、圓錐曲線的標(biāo)準(zhǔn)方程,考查了推理能力與計算能力,屬于中檔礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)<f(-2)<f(0) | B. | f(0)<f(-2)<f(2) | C. | f(-2)<f(0)<f(2) | D. | f(2)<f(0)<f(-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com