2.空間四邊形ABCD中,AB=CD且AB與CD所成的角為60°,E、F分別是BC、AD的中點(diǎn),求EF與AB所成角的大。

分析 取AC的中點(diǎn)G,連結(jié)EG、FG,則EG∥AB,GF∥CD,且由AB=CD知EG=FG,從而得到∠GEF(或它的補(bǔ)角)為EF與AB所成的角,∠EGF(或它的補(bǔ)角)為AB與CD所成的角,由此能求出EF與AB所成的角.

解答 解:取AC的中點(diǎn)G,連結(jié)EG、FG,則EG∥AB,GF∥CD,
且由AB=CD知EG=FG,
∴∠GEF(或它的補(bǔ)角)為EF與AB所成的角,
∠EGF(或它的補(bǔ)角)為AB與CD所成的角.(4分)
∵AB與CD所成的角為60°,∴∠EGF=60°或120°.
由EG=FG知△EFG為等腰三角形,
當(dāng)∠EGF=60°時(shí),∠GEF=60°;
當(dāng)∠EGF=120°時(shí),∠GEF=30°.
故EF與AB所成的角為60°或30°.(10分)

點(diǎn)評(píng) 本題考查異面直線所成角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知loga2+loga3=2,則實(shí)數(shù)a=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=$\sqrt{5}$,AA1=a,M為線段BB1上的一動(dòng)點(diǎn),則當(dāng)AM+MC1最小值為3$\sqrt{2}$,△AMC1的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值為(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,水平放置的三棱柱的側(cè)棱長(zhǎng)和底邊長(zhǎng)均為4,且側(cè)棱垂直于底面,正視圖是邊長(zhǎng)為4的正方形,則三棱柱的左視圖面積為( 。
A.8$\sqrt{3}$B.2$\sqrt{2}$C.$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知角α的終邊上一點(diǎn)的坐標(biāo)為(sin$\frac{π}{6}$,cos$\frac{π}{6}$),則角α的最小正值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(x)是定義在R上周期為2的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=3x-1,則f(log35)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.4D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=loga(1+x)-loga(1-x)的圖象經(jīng)過(guò)點(diǎn)(-$\frac{1}{2}$,-1).
(1)求實(shí)數(shù)a;
(2)判斷函數(shù)f(x)的奇偶數(shù),并寫出f($\frac{1}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.從(40,30),(50,10),(20,30),(45,5),(10,10)這5個(gè)點(diǎn)中任取一個(gè)點(diǎn),這個(gè)點(diǎn)在圓x2+y2=2016內(nèi)部的概率是( 。
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案