18.函數(shù)$f(x)=sin({ωx+\frac{π}{4}})$在$({\frac{π}{2},π})$上單調(diào)遞減,則正實(shí)數(shù)ω的取值范圍是[$\frac{1}{2}$,$\frac{5}{4}$].

分析 由條件利用正弦函數(shù)的單調(diào)性,求得正實(shí)數(shù)ω的取值范圍.

解答 解:由函數(shù)$f(x)=sin({ωx+\frac{π}{4}})$在$({\frac{π}{2},π})$上單調(diào)遞減,可得函數(shù)的半個(gè)周期大于或等于$\frac{π}{2}$,
即$\frac{π}{ω}$≥$\frac{π}{2}$,∴0<ω≤2.
由ω•$\frac{π}{2}$+$\frac{π}{4}$≥2kπ+$\frac{π}{2}$,且ω•π+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得4k+$\frac{1}{2}$≤ω≤2k+$\frac{5}{4}$,k∈Z,
則正實(shí)數(shù)ω的取值范圍是[$\frac{1}{2}$,$\frac{5}{4}$],
故答案為:[$\frac{1}{2}$,$\frac{5}{4}$].

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在等差數(shù)列{an}中,a1+a3+a5=9,a2+a4+a6=15,則數(shù)列{an}的前10項(xiàng)的和等于80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量$\vec m=(sinA,a),\vec n=(1,sinB)$
(1)當(dāng)$\vec m•\vec n=2sinA$時(shí),求b的值;
(2)當(dāng)$\vec m∥\vec n$時(shí),且$cosC=\frac{1}{2}a$,求tanA•tanB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.等比數(shù)列{an}的各項(xiàng)均為正數(shù),a1>1,a6+a7>a6a7+1>2,記{an}前n項(xiàng)積為T(mén)n,則滿足Tn>1的最大正整數(shù)n的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.方程9x+3x-6=0的實(shí)數(shù)解為 x=log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)函數(shù)f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者.若f(a+2)>f(a),則實(shí)數(shù)a的取值范圍為( 。
A.(-1,0)B.[-2,0]C.(-∞,-2)∪(-1,0)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若點(diǎn)P、Q均在橢圓$Γ:\frac{x^2}{a^2}+\frac{y^2}{{{a^2}-1}}=1$(a>1)上運(yùn)動(dòng),F(xiàn)1、F2是橢圓Γ的左、右焦點(diǎn),則$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}-2\overrightarrow{PQ}}|$的最大值為2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)$f(x)=\frac{1}{3}{x^3}-{x^2}-3x+5$的零點(diǎn)的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè) a=sin46°,b=cos46°,c=tan46°.則( 。
A.c>a>bB.a>b>cC.b>c>aD.c>b>a

查看答案和解析>>

同步練習(xí)冊(cè)答案