8.設(shè) a=sin46°,b=cos46°,c=tan46°.則( 。
A.c>a>bB.a>b>cC.b>c>aD.c>b>a

分析 由條件利用誘導(dǎo)公式、正弦函數(shù)的單調(diào)性和值域,得出結(jié)論.

解答 解:由 a=sin46°,b=cos46°=sin44°,c=tan46°>tan45°=1,
而y=sinx在(0,$\frac{π}{2}$)上是增函數(shù)且函數(shù)值小于1,
可得 c>a>b,
故選:A.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、正弦函數(shù)的單調(diào)性和值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)$f(x)=sin({ωx+\frac{π}{4}})$在$({\frac{π}{2},π})$上單調(diào)遞減,則正實(shí)數(shù)ω的取值范圍是[$\frac{1}{2}$,$\frac{5}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).
(1)求證:PA∥平面BDE;
(2)若PA=AB=2,求三棱錐D-BEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,在△OAB中,點(diǎn)P在邊AB上,且AP:PB=3:2.則$\overrightarrow{OP}$=(  )
A.$\frac{3}{5}\overrightarrow{OA}+\frac{2}{5}\overrightarrow{OB}$B.$\frac{2}{5}\overrightarrow{OA}+\frac{3}{5}\overrightarrow{OB}$C.$\frac{3}{5}\overrightarrow{OA}-\frac{2}{5}\overrightarrow{OB}$D.$\frac{2}{5}\overrightarrow{OA}-\frac{3}{5}\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x+1|,x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a(a∈R)有四個(gè)不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則(x1+x2)x4的取值范圍是[-4,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,E,F(xiàn)分別是BB1,CD的中點(diǎn),則點(diǎn)F到平面A1D1E的距離為(  )
A.$\frac{3}{10}$aB.$\frac{3\sqrt{7}}{10}$aC.$\frac{3\sqrt{5}}{10}$aD.$\frac{7}{10}$a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.?dāng)?shù)列{an}的前n項(xiàng)和Sn=100n-n2(n∈N*).
(1)判斷{an}是不是等差數(shù)列,若是,求其首項(xiàng)、公差;
(2)設(shè)bn=|an|,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)=$\sqrt{x}$+x-k(k∈Z)在區(qū)間(2,3)上有零點(diǎn),則k等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)滿足f(x+1)=xf(x),且當(dāng)x∈[0,1)時(shí),f(x)=x2,若在區(qū)間(-1,1)上,g(x)=f(x)-mx+1有兩個(gè)零點(diǎn),則m的范圍( 。
A.m<-$\frac{5}{4}$或m>2B.m>2C.-$\frac{5}{4}$<m≤-1或m=2D.-$\frac{5}{4}$<m≤-1或m>2

查看答案和解析>>

同步練習(xí)冊(cè)答案