10.如圖,在平面四邊形ABCD中,AB=5$\sqrt{2}$,∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(I)求AC的長(zhǎng);
(Ⅱ)求CD的長(zhǎng).

分析 (1)由題意在△BAC中由正弦定理可得AC;
(2)在△BAD中由正弦定理可得BD,由和差角公式可得cos75°,由余弦定理可得CD.

解答 解:(1)由題意可得∠ACB=180°-(75°+30°+45°)=30°,
在△BAC中,由正弦定理可得AC=$\frac{sin105°}{sin30°}×5\sqrt{2}$=5($\sqrt{3}$+1);
(2)在△BAD中,由正弦定理可得BD=$\frac{5\sqrt{2}×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{2}}{2}}$=$\frac{5(\sqrt{6}+\sqrt{2})}{2}$,
又cos75°=cos(30°+45°)=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
∴由余弦定理可得CD2=BC2+BD2-2BC•BDcos∠CBD
=100+[$\frac{5(\sqrt{6}+\sqrt{2})}{2}$]2-2×10×$\frac{5(\sqrt{6}+\sqrt{2})}{2}$×$\frac{\sqrt{6}-\sqrt{2}}{4}$=100+25$\sqrt{3}$,
∴CD=5$\sqrt{4+\sqrt{3}}$.

點(diǎn)評(píng) 本題考查三角形中的幾何計(jì)算,涉及正余弦定理和和差角的三角函數(shù)公式,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.圓C:x2+(y+3)2=8關(guān)于直線y=x的對(duì)稱曲線為曲線C′,直線y=x+m-3與曲線C′交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),△ABO的面積為$\sqrt{7}$.
(1)求曲線C′的方程.
(2)求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知f(x)是定義域?yàn)镽的奇函數(shù),若?x∈R,f′(x)>-2,則不等式f(x-1)<x2(3-2lnx)+3(1-2x)的解集是( 。
A.(0,1)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.記min{a,b,c}為實(shí)數(shù)a,b,c中最小的一個(gè),已知函數(shù)f(x)=-x+1圖象上的點(diǎn)(x1,x2+x3)滿足:對(duì)一切實(shí)數(shù)t,不等式-t2-${2}^{{x}_{1}^{2}}$t-2${\;}^{2+{x}_{1}^{2}-{x}_{2}^{2}-{x}_{3}^{2}}$+4${\;}^{2-{x}_{2}^{2}-{x}_{3}^{2}}$≤0均成立,如果min{-x1,-x2,-x3}=-x1,那么x1的取值范圍是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且csinC-bsinB=(a-b)sinA.
(1)求角C;
(2)若c=5,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若x,y的滿足$\left\{\begin{array}{l}x-y+3≥0\\ x+y-3≥0\\ x≥1.\end{array}\right.$,則z=2x-y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖是計(jì)算$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2016}$的程序框圖,判斷框內(nèi)的條件是n≤2016?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,∠ABC=90°,且CD=2AB,點(diǎn)E在棱PB上,且PE=2EB,PA=AB=BC.
(1)求證:PD∥平面AEC;
(2)若PA=3,求三棱錐P-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某中學(xué)高一年級(jí)共8個(gè)班,現(xiàn)從高一年級(jí)選10名同學(xué)組成社區(qū)服務(wù)小組,其中高一(1)班選取3名同學(xué),其它各班各選取1名同學(xué).現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到社區(qū)老年中心參加“尊老愛老”活動(dòng)(每位同學(xué)被選到的可能性相同).
(Ⅰ)求選出的3名同學(xué)來(lái)自不同班級(jí)的概率;
(Ⅱ)設(shè)X為選出同學(xué)中高一(1)班同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案