分析 (1)由題意在△BAC中由正弦定理可得AC;
(2)在△BAD中由正弦定理可得BD,由和差角公式可得cos75°,由余弦定理可得CD.
解答 解:(1)由題意可得∠ACB=180°-(75°+30°+45°)=30°,
在△BAC中,由正弦定理可得AC=$\frac{sin105°}{sin30°}×5\sqrt{2}$=5($\sqrt{3}$+1);
(2)在△BAD中,由正弦定理可得BD=$\frac{5\sqrt{2}×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{2}}{2}}$=$\frac{5(\sqrt{6}+\sqrt{2})}{2}$,
又cos75°=cos(30°+45°)=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
∴由余弦定理可得CD2=BC2+BD2-2BC•BDcos∠CBD
=100+[$\frac{5(\sqrt{6}+\sqrt{2})}{2}$]2-2×10×$\frac{5(\sqrt{6}+\sqrt{2})}{2}$×$\frac{\sqrt{6}-\sqrt{2}}{4}$=100+25$\sqrt{3}$,
∴CD=5$\sqrt{4+\sqrt{3}}$.
點(diǎn)評(píng) 本題考查三角形中的幾何計(jì)算,涉及正余弦定理和和差角的三角函數(shù)公式,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com