【題目】對于維向量,若對任意均有,則稱向量. 對于兩個向量定義.

(1)若, 求的值;

(2)現(xiàn)有一個向量序列: 且滿足: ,求證:該序列中不存在向量.

(3) 現(xiàn)有一個向量序列: 且滿足: ,若存在正整數(shù)使得向量序列中的項,求出所有的.

【答案】(1)(2)不存在(3)

【解析】試題分析:(Ⅰ)根據(jù)的定義可求得其值;(Ⅱ)利用反證法,向量的每一個分量變?yōu)?/span>,都需要奇數(shù)次變化,根據(jù),得出矛盾;(Ⅲ)根據(jù)題意可得.

試題解析:(Ⅰ)由于, ,由定義,

可得.

(Ⅱ)反證法:若結(jié)論不成立,即存在一個含向量序列,

使得, .

因為向量的每一個分量變?yōu)?/span>,都需要奇數(shù)次變化,

不妨設的第個分量變化了次之后變成,

所以將中所有分量 變?yōu)?/span> 共需要 次,此數(shù)為奇數(shù).

又因為,說明中的分量有個數(shù)值發(fā)生改變,

進而變化到,所以共需要改變數(shù)值次,此數(shù)為偶數(shù),所以矛盾.

所以該序列中不存在向量.

(Ⅲ)此時.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四個函數(shù)y=sin|x|,y=cos|x|,y= ,y=lg|sinx|中,以π為周期,在 上單調(diào)遞增的偶函數(shù)是(
A.y=sin|x|
B.y=cos|x|
C.y=
D.y=lg|sinx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, ,曲線上的任意一點滿足: .

(1)求點的軌跡方程;

(2)過點的直線與曲線交于, 兩點,交軸于點,設, ,試問是否為定值?如果是定值,請求出這個定值,如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)p:不論m取何實數(shù),方程x2xm0必有實數(shù)根;

(2)q:存在一個實數(shù)x,使得x2x10;

(3)r:等圓的面積相等,周長相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)設,若對任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明計劃在811日至820日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機選擇8月11日至8月19日中的某一天到達該主題公園,并游覽.

(1)求小明連續(xù)兩天都遇上擁擠的概率;

(2)設是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學期望;

(3)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某顏料公司生產(chǎn) 兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸,160噸和200噸,如果產(chǎn)品的利潤為300元/噸, 產(chǎn)品的利潤為200元/噸,則該顏料公司一天之內(nèi)可獲得最大利潤為( )

A. 14000元 B. 16000元 C. 18000元 D. 20000元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知θ∈[0, ],直線xsinθ+ycosθ﹣1=0和圓C:(x﹣1)2+(y﹣cosθ)2= 相交所得的弦長為 ,則θ=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

同步練習冊答案