17.一枚硬幣連擲3次,僅有兩次正面向上的概率是( 。
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{1}{4}$

分析 由條件利用n次獨立重復試驗中恰好發(fā)生k次的概率公式,求得僅有兩次正面向上的概率.

解答 解:一枚硬幣連擲3次,每次正面向上的概率為$\frac{1}{2}$,則僅有兩次正面向上的概率為${C}_{3}^{2}$•${(\frac{1}{2})}^{2}$•$\frac{1}{2}$=$\frac{3}{8}$,
故選:B.

點評 本題考查相互獨立事件的概率乘法公式及n次獨立重復試驗中恰好發(fā)生k次的概率公式的應用,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率是$\frac{\sqrt{7}}{2}$,則E的漸近線方程為( 。
A.y=±xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\frac{\sqrt{3}}{2}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知直線${l_1}:\sqrt{3}x+y-1=0,{l_2}:ax+y=1$,且l1⊥l2,則l1的傾斜角為$\frac{2π}{3}$,原點到l2的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知f(x)是區(qū)間[-1,3]上的增函數(shù),若f(a)>f(1-2a),則a的取值范圍是($\frac{1}{3}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.將函數(shù)$f(x)=\sqrt{3}sin(\frac{1}{4}x)cos(\frac{1}{4}x)+{cos^2}(\frac{1}{4}x)-\frac{1}{2}$的圖象向左平移φ(0<φ<π)個單位,再將所得圖象上各點的橫坐標縮短為原來的$\frac{1}{ω}$(ω>0)倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,已知函數(shù)y=g(x)是周期為π的偶函數(shù),則ω,φ的值分別為(  )
A.4,$\frac{π}{3}$B.4,$\frac{2π}{3}$C.2,$\frac{π}{3}$D.2,$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知直線l的極坐標方程是ρcosθ-ρsinθ-1=0,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,曲線C的參數(shù)方程是$\left\{{\begin{array}{l}{x=cosα-1}\\{y=sinα}\end{array}}\right.$(α為參數(shù)).
(Ⅰ)求直線l的直角坐標方程和曲線C的普通方程;
(Ⅱ)若直線l與x、y軸交于M、N兩點,點P為曲線C上任一點.求△PMN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.點P在圓C1:x2+y2+4x+2y+1=0上,點Q在圓C2:x2+y2-4x-4y+6=0上,則|PQ|的最小值是( 。
A.5B.1C.$3-\sqrt{2}$D.$3+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.△ABC的三個內(nèi)角為A,B,C及其三邊a,b,c,且A,B,C成等差數(shù)列,
(1)若a,b,c成等比數(shù)列,求證:△ABC為等邊三角形;
(2)用分析法證明:$\frac{1}{a+b}$+$\frac{1}{b+c}$=$\frac{3}{a+b+c}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若f(a+b)=f(a)•f(b)(a,b∈N*),且f(1)=2,則$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2012)}{f(2011)}$=2012.

查看答案和解析>>

同步練習冊答案