17.拋物線x2=2py(p>0)的焦點(diǎn)F,其準(zhǔn)線與雙曲線$\frac{x^2}{3}-\frac{y^2}{3}=1$相交于A,B兩點(diǎn),若△ABC是等邊三角形,則p等于( 。
A.6B.8C.4D.2

分析 求出拋物線的焦點(diǎn)坐標(biāo),準(zhǔn)線方程,然后求出拋物線的準(zhǔn)線與雙曲線的交點(diǎn)坐標(biāo),利用三角形是等邊三角形求出p即可.

解答 解:拋物線的焦點(diǎn)坐標(biāo)為(0,$\frac{p}{2}$),準(zhǔn)線方程為:y=-$\frac{p}{2}$,
準(zhǔn)線方程與雙曲線聯(lián)立解得x=±$\sqrt{3+\frac{{p}^{2}}{4}}$,
因?yàn)椤鰽BF為等邊三角形,所以p=$\frac{\sqrt{3}}{2}$•2$\sqrt{3+\frac{{p}^{2}}{4}}$,解得p=6.
故選:A.

點(diǎn)評 本題考查拋物線的簡單性質(zhì),雙曲線方程的應(yīng)用,考查分析問題解決問題的能力以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=cos2x+2sinx在區(qū)間[-$\frac{π}{6}$,θ]上的最小值為-$\frac{1}{4}$,則θ的取值范圍是[$-\frac{π}{6},\frac{7π}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,則y≥x的概率為$\frac{1}{4}-\frac{1}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=ax-1,其中a>0且a≠1
(1)求f(2)+f(-2)的值;
(2)求x<0時f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=ex-2x+1在[0,1)上的最小值是( 。
A.2B.e-1C.3-2ln2D.2-2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線x+y-2=0與圓x2+y2-4y=0的位置關(guān)系是( 。
A.相交且過圓心B.相離C.相切D.相交且不過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AC=9,BC=12,AB=15,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥B1C;
(2)求證:AC1∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.三條兩兩相交的直線最多可確定( 。﹤平面.
A.1B.2C.3D.無數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知三角形的頂點(diǎn)是A(1,-1,1),B(2,1,-1),C(-1,-1,-2),則這個三角形的面積等于( 。
A.$\frac{\sqrt{101}}{2}$B.$\frac{\sqrt{97}}{2}$C.$\frac{\sqrt{103}}{2}$D.$\frac{\sqrt{105}}{2}$

查看答案和解析>>

同步練習(xí)冊答案