分析 (1)根據(jù)向量數(shù)量積的定義求出函數(shù)f(x)的表達(dá)式,即可求函數(shù)f(x)的最小正周期T;
(2)根據(jù)兩角和差的余弦公式進(jìn)行求解即可.
解答 解:(1)$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}=\sqrt{3}sinxcosx+{sin^2}x-\frac{1}{2}$
=$\frac{{\sqrt{3}}}{2}sin2x+\frac{1-cos2x}{2}-\frac{1}{2}=\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x$=$sin(2x-\frac{π}{6})$,
故函數(shù)f(x)的最小正周期T=π.
(2)由$f(\frac{α}{2})=\frac{{\sqrt{5}}}{5}$,$f(\frac{β}{2})=\frac{{3\sqrt{10}}}{10}$,
得:$sin(α-\frac{π}{6})=\frac{{\sqrt{5}}}{5}$,$sin(β-\frac{π}{6})=\frac{{3\sqrt{10}}}{10}$
又$α∈(0,\frac{π}{2})$,$β∈(0,\frac{π}{2})$
∴$α-\frac{π}{6}∈(-\frac{π}{6},\frac{π}{3})$,$β-\frac{π}{6}∈(-\frac{π}{6},\frac{π}{3})$
∴$cos(α-\frac{π}{6})=\frac{{2\sqrt{5}}}{5}$,$cos(β-\frac{π}{6})=\frac{{\sqrt{10}}}{10}$.
∴$cos(α-β)=cos[(α-\frac{π}{6})-(β-\frac{π}{6})]$
$\begin{array}{l}=cos(α-\frac{π}{6})cos(β-\frac{π}{6})+sin(α-\frac{π}{6})sin(β-\frac{π}{6})\\=\frac{{2\sqrt{5}}}{5}×\frac{{\sqrt{10}}}{10}+\frac{{\sqrt{5}}}{5}×\frac{{3\sqrt{10}}}{10}\end{array}$
=$\frac{{\sqrt{2}}}{2}$.
點(diǎn)評(píng) 本題主要考查三角函數(shù)周期的計(jì)算,以及三角函數(shù)值的化簡和求解,利用兩角和差的余弦公式是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 1 | 2 | 3 |
f(x) | 1 | 3 | 1 |
x | 1 | 2 | 3 |
g(x) | 3 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不等邊三角形 | B. | 鈍角三角形 | C. | 等腰直角三角形 | D. | 等邊三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5,15,25,36,45,55 | B. | 2,4,8,16,32,48 | ||
C. | 2,12,23,34,45,56 | D. | 3,13,23,33,43,53 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${a_n}=\frac{{3+{{(-1)}^n}}}{2}$ | B. | ${a_n}=\frac{{3+{{(-1)}^{n+1}}}}{2}$ | ||
C. | ${a_n}=\frac{3+cosnπ}{2}$ | D. | ${a_n}=\frac{{3+sin\frac{2n+1}{2}π}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com