6.如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的一段圖象,則函數(shù)的解析式為y=sin(2x+$\frac{π}{3}$).

分析 由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.

解答 解:結(jié)合函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的一段圖象,可得A=1,
$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{12}$-(-$\frac{π}{6}$),∴ω=2.
再根據(jù)五點法作圖可得2•$\frac{π}{12}$+φ=$\frac{π}{2}$,求得φ=$\frac{π}{3}$,∴函數(shù)的解析式為 函數(shù)y=sin(2x+$\frac{π}{3}$),
故答案為:y=sin(2x+$\frac{π}{3}$).

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.求函數(shù)f(x)=cos2x+2asinx-1,x∈[0,$\frac{π}{2}$]的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.對于集合A,B,如果映射f:A→B滿足f(a)+f(b)=f(c).則把此映射稱為“引射”,若A={a,b,c},B={1,0,-1},則f:A→B構(gòu)成的所有映射中“引導(dǎo)映射”的概率$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.程序框圖的功能是:給出以下十個數(shù):5,9,80,43,95,73,28,17,60,36,把大于60的數(shù)找出來,則框圖中的①②應(yīng)分別填入的是(  )
A.x>60?,i=i-1B.x<60?,i=i+1C.x>60?,i=i+1D.x<60?,i=i-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)f(x)的定義域為D,若f(x)滿足下面兩個條件,則稱f(x)為閉函數(shù):①f(x)在D上是單調(diào)函數(shù);②存在[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b].現(xiàn)已知f(x)=$\sqrt{2x+1}$+k為閉函數(shù),則k的取值范圍是( 。
A.(-1,-$\frac{1}{2}$]B.(-∞,1)C.[$\frac{1}{2}$,1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)$y=cos(2x+\frac{π}{3})$的定義域是[a,b],值域為$[-\frac{1}{2},1]$,則b-a的最大值與最小值之和為( 。
A.B.πC.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$\overrightarrow a=(1,2),\;\overrightarrow b=(1,0),\;\overrightarrow c=(3,4)$,若$(\overrightarrow b+λ\overrightarrow a)⊥\overrightarrow c$,則實數(shù)λ的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$-\frac{11}{3}$D.$-\frac{3}{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知數(shù)列{an},a1=2,an=2an-1+$\frac{{2}^{n}}{n(n+1)}$,則an=$\frac{3n+1}{2(n+1)}•{2}^{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知下列框圖,若a=5,則輸出b=26.

查看答案和解析>>

同步練習冊答案