分析 (1)通過聯(lián)立a4=b2、a8=b3,計算可知公差和公比,利用公式計算即得結(jié)論;
(2)通過(1)可知${c_n}=\frac{n}{2^n}$,進(jìn)而利用錯位相減法計算即得結(jié)論.
解答 (1)解:設(shè)等差數(shù)列{an}的公差為d(d>0),等比數(shù)列{bn}的公比為q(q>0),
∵a1=1,b1=2,a4=b2,a8=b3,
∴1+3d=2q,1+7d=2q2,
解得:d=1,q=2,
∴an=n,${b_n}={2^n}$;
(2)證明:∵an=n,${b_n}={2^n}$,
∴${c_n}=\frac{n}{2^n}$,
∴${S_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n-1}{{{2^{n-1}}}}+\frac{n}{2^n}$,
$\frac{1}{2}{S_n}=\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+…+\frac{n-1}{2^n}+\frac{n}{{{2^{n+1}}}}$,
兩式相減得,$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$,
∴Sn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=1$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-$\frac{n+2}{{2}^{n}}$
<2.
點評 本題考查數(shù)列的通項及前n項和,考查錯位相減法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com