17.圓x2+y2-4x=0的圓心到雙曲線$\frac{{x}^{2}}{3}$-y2=1的漸近線的距離為( 。
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

分析 求得圓的圓心和半徑,雙曲線的漸近線方程,運(yùn)用點(diǎn)到直線的距離公式,計(jì)算即可得到所求值.

解答 解:圓x2+y2-4x=0的圓心為(2,0),半徑為2,
雙曲線$\frac{{x}^{2}}{3}$-y2=1的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x,
可得圓心到雙曲線$\frac{{x}^{2}}{3}$-y2=1的漸近線的距離為:
d=$\frac{\frac{2\sqrt{3}}{3}}{\sqrt{1+\frac{1}{3}}}$=1.
故選:A.

點(diǎn)評 本題考查圓心到漸近線的距離,注意運(yùn)用點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知公差大于零的等差數(shù)列{an},各項(xiàng)均為正數(shù)的等比數(shù)列{bn},滿足a1=1,b1=2,a4=b2,a8=b3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令${c_n}=\frac{a_n}{b_n}$,數(shù)列{cn}的前n項(xiàng)和為Sn,求證:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.直線mx-y+2=0與曲線y=$\sqrt{1-{x}^{2}}$交點(diǎn)個(gè)數(shù)情況如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x|x-a|
(1)判斷f(x)的奇偶性,并證明;
(2)求實(shí)數(shù)a的取值范圍,使函數(shù)g(x)=f(x)+2x+1在R上恒為增函數(shù);
(3)求函數(shù)f(x)在[-1,1]的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a,b∈R,那么“l(fā)n$\frac{a}$>0”是“a>b>0”的( 。
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-7≤0}\\{x-1≥0}\\{\;}\end{array}\right.$,則Z=$\frac{y+x}{x}$的取值范圍為(  )
A.[$\frac{14}{5}$,7]B.[4,7]C.[$\frac{14}{5}$,4]D.[7,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等比數(shù)列{an}中,a1•a7=4,則a22+a62的最小值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖:已知,在△OBC中,點(diǎn)A是BC的中點(diǎn),$\overrightarrow{OD}$=2$\overrightarrow{DB}$,DC和OA交于點(diǎn)E,則△OEC與△OBC的面積的比值是( 。
A.$\frac{4}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={-1,0,1},B={x|y=x2,x∈R},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.{1}D.

查看答案和解析>>

同步練習(xí)冊答案