19.我國2005年人均GDP為1703美元,如果按照7%的年平均增長率,我們要努力多少年才能達(dá)到發(fā)達(dá)國家水平(一般認(rèn)為,發(fā)達(dá)國家水平人均GDP應(yīng)在10000美元以上).

分析 根據(jù)題目含有得出關(guān)系式1703×(1+7%)x≥10000,運(yùn)用對數(shù)運(yùn)算即可得出答案.

解答 解:根據(jù)題意得出:1703×(1+7%)x≥10000,
x≥log1.007$\frac{10000}{1703}$,
取n=[log1.007$\frac{10000}{1703}$].
當(dāng)log1.007$\frac{10000}{1703}$+1時(shí),才能達(dá)到發(fā)達(dá)國家水平.

點(diǎn)評(píng) 本題綜合考察了函數(shù)的定義,性質(zhì),對數(shù)函數(shù)的概念,對數(shù)的運(yùn)算,關(guān)鍵列出函數(shù)解析式,運(yùn)算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.6本不同的書,按下列要求各有多少種不同的方法:
(1)分給甲、乙、丙三人,每人兩本;
(2)分為三份,每份兩本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD,BE⊥DF.
(1)若M位EA的中點(diǎn),求證:AC∥平面MDF;
(2)若AB=2,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知公差大于零的等差數(shù)列{an},各項(xiàng)均為正數(shù)的等比數(shù)列{bn},滿足a1=1,b1=2,a4=b2,a8=b3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令${c_n}=\frac{a_n}{b_n}$,數(shù)列{cn}的前n項(xiàng)和為Sn,求證:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}是首項(xiàng)和公差相等的等差數(shù)列,其前n項(xiàng)和為Sn,且S10=55.
(Ⅰ)求an和Sn;
(Ⅱ)設(shè)${b_n}=\frac{1}{S_n}$,數(shù)列{bn}的前項(xiàng)和Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.[A]已知數(shù)列{an}滿足a4=20,an+1=2an-n+1(n∈N+).
(1)計(jì)算a1,a2,a3,根據(jù)計(jì)算結(jié)果,猜想an的表達(dá)式(不必證明);
(2)若數(shù)列{an}的前n項(xiàng)和Sn>2016,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等比數(shù)列{an},滿足an+1>an,a1+a4=9,a2•a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{(2n-1)an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.直線mx-y+2=0與曲線y=$\sqrt{1-{x}^{2}}$交點(diǎn)個(gè)數(shù)情況如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等比數(shù)列{an}中,a1•a7=4,則a22+a62的最小值為( 。
A.4B.6C.8D.10

查看答案和解析>>

同步練習(xí)冊答案