分析 (1)通過對an+1=$\frac{n+1}{2n}$an變形可知$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$•$\frac{{a}_{n}}{n}$,進而可知數(shù)列{$\frac{{a}_{n}}{n}$}是首項、公比均為$\frac{1}{2}$的等比數(shù)列;
(2)通過(1)可知${a_n}=\frac{n}{2^n}$,進而利用錯位相減法計算即得結(jié)論.
解答 (1)證明:∵an+1=$\frac{n+1}{2n}$an,
∴$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$•$\frac{{a}_{n}}{n}$,
又∵$\frac{{a}_{1}}{1}$=$\frac{1}{2}$,
∴數(shù)列{$\frac{{a}_{n}}{n}$}是首項、公比均為$\frac{1}{2}$的等比數(shù)列;
(2)解:由(1)可知$\frac{{a}_{n}}{n}$=$\frac{1}{{2}^{n}}$,${a_n}=\frac{n}{2^n}$,
∴${S_n}=\frac{1}{2}+\frac{2}{2^2}+…+\frac{n}{2^n}$,
$\frac{1}{2}$Sn=$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$+n•$\frac{1}{{2}^{n+1}}$,
兩式相減得:$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$,
∴Sn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-$\frac{n+2}{{2}^{n}}$.
點評 本題考查數(shù)列的通項及前n項和,考查錯位相減法,對表達式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{6}=1$ | B. | $\frac{{y}^{2}}{3}-\frac{{x}^{2}}{6}=1$ | C. | $\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}=1$ | D. | $\frac{{y}^{2}}{4}-\frac{{x}^{2}}{8}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
i | 1 | 2 | 3 |
F(i) | 2 | 3 | 1 |
i | 1 | 2 | 3 | 4 |
F(i) | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 充要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com