分析 (1)根據(jù)正弦定理來求邊AB、BC的長度;
(2)由AB+BC=6得到:4sin($\frac{π}{3}$+θ)+4sinθ=6,結合和差化積公式得到θ的值,由此可以判定△ABC的形狀為鈍角三角形.
解答 解:(1)由正弦定理得:$\frac{AC}{sinB}$=$\frac{BC}{sinA}$,即$\frac{2\sqrt{3}}{sin\frac{π}{3}}$=$\frac{BC}{sinθ}$,
所以BC=4sinθ.
又∵∠C=π-$\frac{π}{3}$-θ,
∴sinC=sin(π-$\frac{π}{3}$-θ)=sin($\frac{π}{3}$+θ).
∴$\frac{AC}{sinB}$=$\frac{AB}{sinC}$即$\frac{2\sqrt{3}}{sin\frac{π}{3}}$=$\frac{AB}{sin(\frac{π}{3}+θ)}$,
∴AB=4sin($\frac{π}{3}$+θ).
(2)由AB+BC=6得到:4sin($\frac{π}{3}$+θ)+4sinθ=6,
所以,8sin($\frac{π}{6}$+θ)×$\frac{\sqrt{3}}{2}$=6,
整理,得
sin($\frac{π}{6}$+θ)=$\frac{\sqrt{3}}{2}$.
∵0<$\frac{π}{6}$+θ<π,
∴$\frac{π}{6}$+θ=$\frac{π}{3}$或$\frac{π}{6}$+θ=$\frac{2π}{3}$,
∴θ=$\frac{π}{6}$,或θ=$\frac{π}{2}$.
∴△ABC是直角三角形.
點評 本題考查了三角形形狀的判斷.解題時,利用了正弦定理,和差化積公式等知識點,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2) | B. | (-2,2) | C. | (-1,5) | D. | (-2,5) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分數(shù) | [50,59) | [60,69) | [70,79) | [80,89) | [90,100] |
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 |
k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com