【題目】給出下列四個(gè)命題:

1)任意兩個(gè)復(fù)數(shù)都不能比較大;(2為實(shí)數(shù)為實(shí)數(shù);(3)虛軸上的點(diǎn)對(duì)應(yīng)的復(fù)數(shù)都是純虛數(shù);(4)復(fù)數(shù)集與復(fù)平面內(nèi)的所有點(diǎn)所成的集合是一一對(duì)應(yīng)的.

其中正確命題的個(gè)數(shù)是(

A.1B.2C.3D.4

【答案】A

【解析】

根據(jù)虛數(shù)不能比較大小可知(1)不正確;根據(jù)兩個(gè)共軛虛數(shù)的積為實(shí)數(shù)可知(2)不正確;根據(jù)原點(diǎn)在虛軸上可知(3)不正確;(4)正確.

解:(1)因?yàn)閮蓚(gè)復(fù)數(shù)都是實(shí)數(shù)時(shí),可以比較大小.所以(1)不正確;

2)舉反例,當(dāng),,,所以(2)不正確;

3)坐標(biāo)原點(diǎn)在虛軸上,但原點(diǎn)對(duì)應(yīng)的復(fù)數(shù)是實(shí)數(shù),所以(3)不正確;

4)復(fù)數(shù)集與復(fù)平面內(nèi)的所有點(diǎn)所成的集合是一一對(duì)應(yīng)的.正確.

所以正確命題的個(gè)數(shù)是:1個(gè).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線(xiàn)人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線(xiàn)人數(shù)增加了

C. 2015年與2018年藝體達(dá)線(xiàn)人數(shù)相同

D. 與2015年相比,2018年不上線(xiàn)的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),過(guò)點(diǎn)作斜率為的直線(xiàn)與圓交于,兩點(diǎn).

(1)若圓心到直線(xiàn)的距離為,求的值;

(2)求線(xiàn)段中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體分別是棱ABBC的中點(diǎn).

(1)證明四點(diǎn)共面;

(2)直線(xiàn)與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?/span>13秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,,第五組.下圖是按上述分組方法得到的頻率分布直方圖.按上述分組方法得到的頻率分布直方圖.

1)若成績(jī)大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測(cè)試中成績(jī)良好的人數(shù);

2)設(shè)m,n表示該班某兩位同學(xué)的百米測(cè)試成績(jī),且已知求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn) y = x3 + x2 在點(diǎn) P0 處的切線(xiàn)平行于直線(xiàn)

4xy1=0,且點(diǎn) P0 在第三象限,

P0的坐標(biāo);

若直線(xiàn), l 也過(guò)切點(diǎn)P0 ,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓上,橢圓的右焦點(diǎn),直線(xiàn)過(guò)橢圓的右頂點(diǎn),與橢圓交于另一點(diǎn),與軸交于點(diǎn).

1)求橢圓的方程;

2)若為弦的中點(diǎn),是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

3)若,交橢圓于點(diǎn),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=lnx+ax2-xx0aR).

(Ⅰ)討論函數(shù)fx)的單調(diào)性;

(Ⅱ)求證:當(dāng)a≤0時(shí),曲線(xiàn)y=fx)上任意一點(diǎn)處的切線(xiàn)與該曲線(xiàn)只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案