3.已知函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)遞減的,試比較f(a2-a+1)與$f(\frac{3}{4})$的大小f(a2-a+1)$≤f(\frac{3}{4})$.

分析 根據(jù)二次函數(shù)最小值的求解公式可得到${a}^{2}-a+1≥\frac{3}{4}$,從而由f(x)在(0,+∞)上單調(diào)遞減便可判斷f(a2-a+1)與$f(\frac{3}{4})$的大小關(guān)系.

解答 解:${a}^{2}-a+1≥\frac{4-1}{4}=\frac{3}{4}$;
∵f(x)在區(qū)間(0,+∞)上單調(diào)遞減;
∴$f({a}^{2}-a+1)≤f(\frac{3}{4})$.
故答案為:$f({a}^{2}-a+1)≤f(\frac{3}{4})$.

點評 考查二次函數(shù)最小值的計算公式,以及減函數(shù)的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}的通項公式為an=n2+kn+5,若對于任意的正整數(shù)n,都有an+1>an,則實數(shù)K的范圍為k>-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計算:$\underset{lim}{x-∞}$(1+$\frac{1}{2x}$)x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2-bx+1.
(1)求實數(shù)a,b使不等式f(x)<0的解集是{x|3<x<4};
(2)若a為整數(shù),b=a+2,且函數(shù)f(x)在(-2,-1)上恰有一個零點,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.己知函數(shù)f(x)與它的導(dǎo)函數(shù)f'(x)滿足x2f'(x)+xf(x)=lnx,且f(e)=$\frac{1}{e}$,則下列結(jié)論正確的是(  )
A.f(x)在區(qū)間(0,+∞)上是減函數(shù)B.f(x)在區(qū)間(0,+∞)上是增函數(shù)
C.f(x)在區(qū)間(0,+∞)上先增后減D.f(x)在區(qū)間(0,+∞)上是先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點M(2,$\sqrt{2}$),離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程:
(2)若直線L與橢圓C交于不同的兩點A,B,且線段AB的中點N(1,1),求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在三棱錐P-ABC中,PA⊥面ABC,∠ABC=90°,若AD⊥PB,垂足為D,求證:AD⊥面BPC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則 ( 。
A.ω=1,φ=$\frac{π}{6}$B.ω=1,φ=-$\frac{π}{6}$C.ω=2,φ=$\frac{π}{6}$D.ω=2,φ=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=sin(x+$\frac{π}{6}$)的一個遞減區(qū)間是(  )
A.[-$\frac{π}{2}$,$\frac{π}{2}$]B.[-π,0]C.[-$\frac{2}{3}π$,$\frac{2}{3}π$]D.[$\frac{π}{2}$,$\frac{2}{3}π$]

查看答案和解析>>

同步練習(xí)冊答案