8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點M(2,$\sqrt{2}$),離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程:
(2)若直線L與橢圓C交于不同的兩點A,B,且線段AB的中點N(1,1),求直線L的方程.

分析 (1)由題意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{4}{{a}^{2}}+\frac{2}{^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得即可得出.
(2)設(shè)A(x1,y1),B(x2,y2).代入橢圓方程可得:$\frac{{x}_{1}^{2}}{8}+\frac{{y}_{1}^{2}}{4}=1$,$\frac{{x}_{2}^{2}}{8}+\frac{{y}_{2}^{2}}{4}$=1,兩式相減并且利用中點坐標(biāo)公式與斜率計算公式可得$\frac{2}{8}+\frac{2k}{4}$=0,解得k即可得出.

解答 解:(1)由題意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{4}{{a}^{2}}+\frac{2}{^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a2=8,b2=c2=4.
∴橢圓C的方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1.
(2)設(shè)A(x1,y1),B(x2,y2).
代入橢圓方程可得:$\frac{{x}_{1}^{2}}{8}+\frac{{y}_{1}^{2}}{4}=1$,$\frac{{x}_{2}^{2}}{8}+\frac{{y}_{2}^{2}}{4}$=1,
兩式相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{8}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{4}$=0,
又x1+x2=2,y1+y2=2,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,
可得$\frac{2}{8}+\frac{2k}{4}$=0,解得k=$-\frac{1}{2}$.
∴直線L的方程為y-1=$-\frac{1}{2}$(x-1),
化為:x+2y-3=0.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、“點差法”、點斜式、中點坐標(biāo)公式、斜率計算公式,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,點P(1,0),以原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的方程為:ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程;
(2)直線L過點P交曲線C于A,B兩點,且滿足|PA|•|PB|=$\frac{6}{5}$,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,AB=AC,BD=DC,AF=C1F.
(1)求證:平面ADC1⊥平面BCC1B1
(2)求證:DF∥平面A1ABB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點C在橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,以C為圓心的圓與x軸相切于橢圓的右焦點F,若圓C與y軸相切,則橢圓的離心率為( 。
A.$\sqrt{2}$-1B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)遞減的,試比較f(a2-a+1)與$f(\frac{3}{4})$的大小f(a2-a+1)$≤f(\frac{3}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知O、A、B、C、D、F、F、G、H為空間9個點(如圖),并且$\overrightarrow{OE}$=k$\overrightarrow{OA}$,$\overrightarrow{OF}$=k$\overrightarrow{OB}$,$\overrightarrow{OH}$=k$\overrightarrow{OD}$,$\overrightarrow{AC}$=$\overrightarrow{AD}$+m$\overrightarrow{AB}$,$\overrightarrow{EG}$=$\overrightarrow{EH}$+m$\overrightarrow{EF}$.求證:
(1)A,B,C,D四點共面;
(2)$\overrightarrow{AC}$∥$\overrightarrow{EG}$;
(3)$\overrightarrow{OG}$=k$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(2cosx,2),$\overrightarrow$=(cosx,$\frac{1}{2}$),記函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow+\sqrt{3}sin2x$
(1)求函數(shù)f(x)的最值以及取得最值時x的集合:
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.比較下列各組數(shù)中兩個值的大。
(1)log35.4,log35.5;
(2)lg0.02,1g3.12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.當(dāng)m為何值時,方程x2-2(m-1)x+3m2=11有兩個相等的實數(shù)解?

查看答案和解析>>

同步練習(xí)冊答案