17.求函數(shù)y=$\frac{2x}{1+{x}^{2}}$的極值點和極值.

分析 求導數(shù),確定導數(shù)為0方程根左右兩側(cè)導數(shù)的符號,據(jù)極值點定義可作出判斷.

解答 解:∵y=$\frac{2x}{1+{x}^{2}}$,
∴y′=$\frac{2(1-{x}^{2})}{(1+{x}^{2})^{2}}$,
∴-1<x<1,y′>0,函數(shù)單調(diào)遞增,
x<-1或x>1,y′<0,函數(shù)單調(diào)遞減,
∴極小值點為x=-1,極小值為-1,極大值點為x=1,極大值為1.

點評 本題考查利用導數(shù)研究函數(shù)函數(shù)的極值,屬基礎(chǔ)題,正確理解導數(shù)與函數(shù)極值的關(guān)系是解決問題的基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,直三棱柱ABC-A1B1C1中,AC=BC=AA1=3,AC⊥BC,點M在線段AB上.
(1)若M是AB中點,證明AC1∥平面B1CM;
(2)當BM長是多少時,三棱錐B1-BCM的體積是三棱柱ABC-A1B1C1的體積的$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$處取得極值.
(1)確定a的值;
(2)討論函數(shù)g(x)=f(x)•ex的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)全集為R,集合A={x|3≤x<6},B={x|2<x<9}.
(1)分別求A∩B,(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若函數(shù)f(x)=x+$\frac{a}{x}$有極值,則a的取值范圍是( 。
A.[0,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-ax-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對任意的x∈R恒成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)集合A={x|y=$\sqrt{{x^2}-4x+3}$},B={y|y=x+$\frac{m}{x}$(m>0),x∈∁RA},若2$\sqrt{m}$∈B,則m取值范圍是(1,9).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在等差數(shù)列{an}中,
(1)已知S8=48,S12=168,求a1和d;
(2)已知a6=10,S5=5,求a8和S8;
(3)已知a3+a15=40,求S17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)y=$\sqrt{1-lg(x+2)}$的定義域為(-2,8].

查看答案和解析>>

同步練習冊答案